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Photon-Counting CT of the Brain: In Vivo Human Results and
Image-Quality Assessment

X A. Pourmorteza, X R. Symons, X D.S. Reich, X M. Bagheri, X T.E. Cork, X S. Kappler, X S. Ulzheimer, and X D.A. Bluemke

ABSTRACT

BACKGROUND AND PURPOSE: Photon-counting detectors offer the potential for improved image quality for brain CT but have not yet
been evaluated in vivo. The purpose of this study was to compare photon-counting detector CT with conventional energy-integrating
detector CT for human brains.

MATERIALS AND METHODS: Radiation dose–matched energy-integrating detector and photon-counting detector head CT scans were
acquired with standardized protocols (tube voltage/current, 120 kV(peak)/370 mAs) in both an anthropomorphic head phantom and 21
human asymptomatic volunteers (mean age, 58.9 � 8.5 years). Photon-counting detector thresholds were 22 and 52 keV (low-energy bin,
22–52 keV; high-energy bin, 52–120 keV). Image noise, gray matter, and white matter signal-to-noise ratios and GM–WM contrast and
contrast-to-noise ratios were measured. Image quality was scored by 2 neuroradiologists blinded to the CT detector type. Reproducibility
was assessed with the intraclass correlation coefficient. Energy-integrating detector and photon-counting detector CT images were
compared using a paired t test and the Wilcoxon signed rank test.

RESULTS: Photon-counting detector CT images received higher reader scores for GM–WM differentiation with lower image noise (all P �

.001). Intrareader and interreader reproducibility was excellent (intraclass correlation coefficient, �0.86 and 0.79, respectively). Quantita-
tive analysis showed 12.8%–20.6% less image noise for photon-counting detector CT. The SNR of photon-counting detector CT was
19.0%–20.0% higher than of energy-integrating detector CT for GM and WM. The contrast-to-noise ratio of photon-counting detector CT
was 15.7% higher for GM–WM contrast and 33.3% higher for GM–WM contrast-to-noise ratio.

CONCLUSIONS: Photon-counting detector brain CT scans demonstrated greater gray–white matter contrast compared with conven-
tional CT. This was due to both higher soft-tissue contrast and lower image noise for photon-counting CT.

ABBREVIATIONS: CNR � contrast-to-noise ratio; EID � energy-integrating detector; ICC � intraclass correlation coefficient; PCD � photon-counting detector

Brain CT remains the first-line technique of choice for the eval-

uation of traumatic and nontraumatic brain injury and is the

most-often-performed CT examination in many emergency

departments.1,2 However, there is limited gray matter–white

matter differentiation with brain CT, decreasing the ability to

assess the hypoattenuation and loss of GM–WM differentia-

tion seen in early ischemic brain changes.3,4 In addition, beam-

hardening artifacts due to attenuation by the skull of lower

energy photons degrade brain CT diagnostic image quality,

potentially mimicking intracranial hemorrhage and reducing

GM–WM differentiation.5

The energy spectrum of x-ray tubes for CT is usually charac-

terized by the peak kilovoltage, but the applied x-ray spectrum

consists of a wide distribution of lower energy photons. Conven-

tional CT uses energy-integrating detectors (EIDs) to combine

the effects of x-ray photon number and photon energy into an
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intensity value through conversion of x-rays to light photons to

electrical pulses. Consequently, with EID CT, low-energy photons

(eg, 40 –70 keV) have less contribution to the CT intensity value

than high-energy photons (eg, 110 –140 keV). For brain imaging

however, it is these low-energy photons that have better soft-

tissue discrimination for identification of gray–white matter

contrast.

Photon-counting detectors (PCDs) are a new technology for

CT imaging that directly converts x-ray photons into electrical

pulses. PCDs measure the number of detected x-ray photons (ie,

photon count) and their photon energy.6-11 These characteristics

allow equal weighting of low- and high-energy photons and may

therefore be useful for improving soft-tissue contrast in the

brain.8 In addition, the direct conversion and counting of indi-

vidual photons provide a better estimate of the underlying photon

statistics, which, in turn, may improve image quality by reducing

image noise.8,12-14 We hypothesized that the combined effects of

better contrast and reduced noise may lead to better overall

GM–WM differentiation in brain PCD CT.

To date, PCD CT scanning of a cadaver head15 has suggested

the feasibility of PCD for brain CT, but in vivo results have not

been previously studied, to our knowledge. Thus, the purpose of

the current study was to compare the image quality of PCD with

that of conventional EID for human brain CT.

MATERIALS AND METHODS
Ex Vivo Human Head Phantom Studies
We used a custom-made anthropomorphic head phantom made

of a human skull embedded in plastic (Phantom Laboratory, Sa-

lem, New York) to assess image quality (Hounsfield unit accuracy

and image noise) and calculate sample size. The phantom was

filled with gel made from a mixture of agar and sucrose with

attenuation values close to those of WM.

In Vivo Human Studies
This Health Insurance Portability and Accountability Act– com-

pliant, institutional review board–approved study with informed

consent prospectively enrolled 21 asymptomatic volunteers

(42.9% men) older than 45 years of age at the National Institutes

of Health Clinical Center. All study subjects were included in the

analysis. Exclusion criteria were age younger than or equal to 45

years, prior CT scan within 12 months, pregnancy, and genetic

predisposition to radiation-induced cancer.

Photon-Counting CT System
The whole-body prototype PCD CT system has been previously

described.16 In brief, this hybrid scanner is based on a dual-source

CT system (Somatom Definition Flash; Siemens, Erlangen, Ger-

many) with 2 x-ray sources at 95° separation; one of the conven-

tional EIDs was replaced with a cadmium-telluride PCD. The 2

subsystems cannot be operated simultaneously; however, it is

possible to perform back-to-back EID and PCD scans with delays

as short as 1 second. With identical x-ray sources and spectra and

similar scanner geometries, this setup provides a convenient plat-

form for EID versus PCD comparative studies. The EID and PCD

have FOVs of 500 and 275 mm, and a collimation � pixel of 64 �

0.6 mm and 32 � 0.5 mm at the isocenter, respectively. Each PCD

pixel consists of 4 � 4 subpixels, coupled to fast application–

specific integrated circuits that count the number of electrical

pulses created by incident photons and measure their energies

above 2 set thresholds. The thresholds can be defined at 1-keV

increments: low-energy threshold between 20 and 50 keV and

high-energy threshold between 50 and 90 keV.

CT Scan Protocol
Spiral noncontrast EID brain CT scans were acquired at clinical

routine settings according to the American Association of Physi-

cists in Medicine guidelines (tube voltage/reference tube current-

time product, 120 kVp/370 mAs; pitch, 0.55; rotation time, 1 sec-

ond; volume CT dose index, 56.7 mGy).17 After a 5-second delay

due to table movements, the EID scan was followed by a PCD scan

with identical tube voltage, current-time, rotation time, and pitch

values. The PCD energy thresholds were defined at 22 and 52 keV,

resulting in 2 energy bins (low-energy bin, 22–52 keV; high-en-

ergy bin, 52–120 keV). The low threshold was set at 22 keV to

capture all detected photons, whereas the high threshold was set at

52 keV to avoid low-energy scatter photons while still maintain-

ing relatively high photon counts. We used the term “PCD im-

ages” to refer to images reconstructed from all detected photons

with energies of �22 keV; the quality of these PCD images was

compared with that of the EID images.

In addition, we investigated the quality of images recon-

structed from low- and high-energy photons detected by the

PCD. With the same tube voltage and tube current–time product

settings, the volume CT dose index estimates for the PCD were

approximately 10% higher than those for the EID. This is not a

limitation of the PCD technology and can be attributed to the

difference in z-axis collimation of the 2 detector systems in the

prototype. Identical collimations would result in similar volume

CT dose index values for both systems.18 Therefore, we matched

the tube voltage and tube current–time product values to obtain a

similar energy spectrum and the number of x-ray photons inci-

dent on both detector systems, allowing a fair comparison.13 The

effective dose was calculated by multiplying the dose-length prod-

uct by 0.0021 mSv/mGy as the constant k-value for brain imaging.

CT Image Reconstruction
Phantom scans were reconstructed using the sinogram-affirmed

iterative reconstruction (strength 3 with J40f [medium] kernel)

(ReconCT, Version 13.8.6.0; Siemens). Human scans were recon-

structed with 2 different kernels: J40f to assess soft tissue and I70f

(very sharp) to assess bone. The FOV was 250 mm with section

thickness/increment of 2/2 mm and a 512 � 512 matrix size.

Qualitative Image Analysis
Two neuroradiologists (M.B. and D.S.R., with 23 and 14 years of

experience, respectively) independently evaluated the image qual-

ity of the EID and PCD images on a conventional PACS system.

Readers were blinded to CT detector type and study-subject de-

mographics. Images were presented side by side in random order

with initial standard window center/width values for brain (45/80

HU) and bone (490/2500 HU). This presentation resulted in 84

blinded image reads (21 subjects � 2 readers � 2 detectors). Im-

age-quality scores were based on the European Guidelines on
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Quality Criteria for Computed Tomography.19 Readers evaluated

GM–WM differentiation, the posterior cranial fossa, ventricles,

bone, and subjective image noise on a 5-point scale. The images

were re-evaluated by 1 reader (M.B.) after 4 weeks to assess in-

trareader reproducibility.

Quantitative Image Analysis
ROIs were carefully positioned in the center of the head phantom

to assess attenuation values and image noise. Image noise was

calculated from corrected SDs of the difference of 2 repeated ac-

quisitions for each detector system; the radial noise-power spec-

trum was estimated for a set of 3.2 � 3.2 cm ROIs centered 5.5 cm

away from the isocenter, as explained in detail in Friedman et al.20

For human datasets, ROIs were placed in the basal ganglia GM, the

internal capsule WM, and the lateral ventricle CSF. The average ROI

size was 24.7�4.2 mm2. Image noise was calculated as the SD of each

ROI. The signal-to-noise ratio for GM and WM ROIs was calculated

as mean attenuation divided by the SD. GM–WM contrast was cal-

culated as the difference of their mean attenuation values. GM–WM

contrast-to-noise ratio (CNR) was calculated as the GM-WM con-

trast divided by the square root of the sum of the variances.

Statistical Analysis
R statistical and computing software, Version 3.3.1 (http://

www.r-project.org) was used for statistical analysis. The Shapiro-

Wilk test was used for normality testing. Continuous data were

expressed as mean � SD. The Wilcoxon signed rank test (paired)

with continuity correction was used to compare reader quality

scores. The paired t test was used to compare continuous vari-

ables. Interreader and intrareader reproducibility was scored with

the intraclass correlation coefficient (ICC) as excellent (ICC,

�0.75), good (ICC, 0.40 – 0.75), or poor (ICC, �0.40). Signifi-

cance was defined as P � .05. The improvement ratio of PCD

compared with EID was calculated as the difference between EID

and PCD quality indices (image noise, SNR, contrast, and CNR)

divided by the value for the EID as described by Pomerantz et al.21

A priori sample size calculation was based on the interstudy SD of

image noise difference between EID and PCD in the head phan-

tom as described by Machin et al22 and Altman23 with the follow-

ing formula: n � f(�, P) � �2 � 2/�2, where � is the significance

level, P is the study power, f is a function of � and P, with � as the

interstudy SD, � as the desired percentage difference to be de-

tected; and n is the sample size needed. An image noise � of 10%

would correspond to approximately 20% radiation dose reduc-

tion without compromising diagnostic image quality.24 To com-

pensate for increased variability in human subjects compared

with phantom experiments, we doubled the � value of our phan-

tom measurements (9.6%). Under these circumstances, a paired

comparison of 21 subjects would be sufficient to reliably detect a

10% image noise difference with P � 90% and � � .05.

RESULTS
Ex Vivo Human Head Phantom Studies
Attenuation values in the center of the head phantom were similar

for EID and PCD scans (25.2 � 0.3 versus 24.5 � 1.5 HU, P �

.170). PCD images showed 8.5% � 4.8% less image noise than

EID images (4.1 � 0.3 versus 3.8 � 0.2 HU, P � .001). The radial

noise-power spectrum at 5.5-cm off-center was estimated for

both detectors. The PCD images showed lower noise power in

most of the detectable spatial frequencies (Fig 1).

In Vivo Human Head CT Studies
Twenty-one subjects (9 men, 12 women) were evaluated. The

mean age for men, women, and all subjects was 61 years (range,

48 –79 years), 57 years (range, 45–70 years), and 59 years (range,

FIG 1. Radial noise-power spectrum (NPS) measured in an anthropo-
morphic head phantom for energy-integrating detector and photon-
counting detector scans at 120 kVp and 370 mAs. The PCD curve was
lower than the EID curve. The difference is more prominent at mid-
to-high spatial frequencies.

FIG 2. Blinded reader evaluation of image quality for energy-integrating detector and photon-counting detector head images. PCD scores are
better for gray matter-versus-white matter differentiation and image noise, whereas EID scores are better for posterior fossa image quality (all
P � .001, paired Wilcoxon signed rank test). Image quality scores are based on the European Guidelines for Image Quality Criteria for Computed
Tomography.19

Table 1: Interreader and intrareader reproducibility of subjective
image-quality analysis

Parameter

Interreader Intrareader

ICC 95% CI ICC 95% CI
Image quality

GM–WM differentiation 0.79 0.65–0.88 0.86 0.75–0.92
Posterior fossa 0.87 0.77–0.93 0.86 0.76–0.92
Bone 0.90 0.82–0.94 0.90 0.82–0.94

Image noise 0.93 0.87–0.96 0.95 0.91–0.97
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45–79 years), respectively. No clinically

relevant incidental findings were de-

tected in our study population. The vol-

ume CT dose index was approximately

10% higher for the PCD system (63.6

versus 56.7 mGy for PCD and EID, respec-

tively) (see “Materials and Methods”).

This resulted in a dose-length product/ef-

fective dose of 860.7 � 43.1 mGy � cm/

1.8 � 0.1 mSv for EID and 957.8 � 45.2

mGy � cm/2.0 � 0.1 mSv for PCD.

Qualitative Image Analysis
Each reader scored 21 pairs (42 acquisi-

tions) of EID and PCD CT images in a

blinded fashion. PCD image-quality

scores were significantly better for GM–

WM differentiation and image noise

(both P � .001) (Fig 2). EID scores were

better for the evaluation of the posterior

fossa (3.5 � 0.7 versus 3.3 � 0.5, P �

.003). Bone image-quality scores were

similar for both detectors. Reader repro-

ducibility was excellent for all scores

(ICC, �0.86, and ICC, �0.79, for intra-

and interreader reproducibility, respec-

tively) (Table 1). Sample EID and PCD

images are shown in Figs 3 and 4.

Quantitative Image Analysis
Attenuation measurements for basal

ganglia GM, internal capsule WM, and

lateral ventricle CSF were similar for the

EID and PCD CT systems (Table 2). Im-

age noise in GM, WM, and CSF was

12.8%–20.6% lower for PCD than for

EID images (GM noise, 3.2 � 0.5 HU for

PCD versus 3.9 � 1.0 HU for EID; WM,

2.7 � 0.7 HU for PCD versus 3.4 � 0.8

HU for EID; lateral ventricle CSF, 3.4 �

0.7 for PCD versus 3.9 � 0.8, for EID; all,

P � .01). GM and WM SNR improve-

ment of PCD CT versus EID CT was

19.0% and 20.0%, respectively. GM–

WM contrast was 15.7% higher for PCD

CT versus EID CT (10.3 � 1.9 versus

8.9 � 1.8 HU, respectively, P � .02) and

GM–WM CNR was 33.3% higher (2.4 �

0.8 versus 1.8 � 0.5, respectively, P �

.001). Quantitative quality indices are

summarized in Table 3.

Spectral Analysis
We compared attenuation values and image-quality metrics be-

tween low- and high-energy bin images in the same ROIs (Table

4). The image noise for the low- and high-energy PCD bins for

WM was 5.0 � 1.6 and 3.9 � 0.7 HU, respectively. Because each

bin contained only a portion of the detected photons, the noise for

FIG 3. Example energy-integrating detector and photon-counting detector images of a 59-year-old
woman (section thickness, 2 mm; increment, 2 mm; window center, 45 HU; window width, 80 HU). A,
Axial EID reconstruction at the level of the basal ganglia. B, Axial PCD reconstruction at the same level
as A. Lower image noise is shown for the PCD image. Zoomed-in EID (C) and PCD (D) images at the same
level as A and B. C indicates caudate; I, internal capsule; L, lentiform nucleus; Th, thalamus.

FIG 4. Sample energy-integrating detector and photon-counting detector images of a 67-year-
old man (section thickness, 2 mm; increment, 2 mm; window center, 45 HU; window width, 80 HU).
A, Coronal EID image at the level of the basal ganglia. B, Coronal PCD image at the same level as
A shows lower image noise for the PCD image. Zoomed-in EID (C) and PCD (D) images at the same
level. C indicates caudate; I, internal capsule; L, lentiform nucleus.

Table 2: Mean attenuation value and SD of ROIs in energy-
integrating detector and photon-counting detector CT images in
human subjects

Attenuation Values (HU) EID PCD P Value
Gray matter 39.0 � 1.6 39.5 � 1.6 .40
White matter 30.2 � 1.4 29.2 � 1.7 .06
Lateral ventricle (CSF) 5.8 � 1.4 5.2 � 1.8 .27
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each bin was higher than that of the PCD image (2.7 � 0.7 HU)

containing all detected photons. However, GM–WM contrast was

significantly better for the low-energy bin images versus high-

energy bin images (10.6 � 2.3 versus 8.8 � 2.5 HU, respectively,

P � .02). GM and WM SNR and GM–WM CNR between the

low- and high-energy bin images were not significantly differ-

ent (Fig 5).

DISCUSSION
Photon-counting CT is a new development in CT scanning in

which fully digital detectors replace crystals that emit light and

photodetectors. In this study, objective measures of image quality

showed that improvement ratios of PCD CT compared with EID

were 12.8%–20.6% for image noise, 19.0%–20.0% for SNR,

15.7% for GM–WM contrast, and 33.3% for GM–WM CNR.

These improvements in image quality were detected by experi-

enced neuroradiologists blinded to the type of CT scan (conven-

tional versus photon-counting CT). Neuroradiologists identified

better GM–WM differentiation and less image noise on PCD im-

ages. These initial, in vivo human results for a prototype pho-

ton-counting CT suggest a high potential for PCD CT to im-

prove image quality for brain CT compared with conventional

detector CT. Alternatively, the lower image noise of the PCD

CT system could translate to reduced radiation dose (approx-

imately 40%) at similar quality levels of current brain CT.24

Our results show that better GM–WM differentiation (CNR)

with PCD versus EID CT is due to both higher GM–WM con-

trast and lower image noise. The improved contrast can be

attributed to the better weighting of low-energy photons,

which produce more contrast among soft tissues. The lower

image noise in PCD was more visible in the mid-to-high fre-

quencies of the noise-power spectrum.

Improved image quality and better gray–white matter contrast

with PCD CT may be very relevant to interpretation of brain CT

examinations. For example, early CT recognition of acute (1–3

hours) stroke relies on detection of subtle GM hypoattenuation

changes such as obscuration of the lentiform nucleus or the insu-

lar ribbon sign due to cytotoxic edema.25 Detection of subtle at-

tenuation differences also plays an important role in the diagnosis

FIG 5. Sample photon-counting detector images of low- and high-energy bins of a 70-year-old woman (section thickness, 2 mm; increment, 2
mm; window center, 45 HU; window width, 80 HU). A, Axial PCD image reconstructed from all detected photons (22–120 keV) at the level of the
basal ganglia. B, Axial PCD image reconstructed from a low-energy bin image (22–52 keV) at the same level as A. C, Axial PCD image reconstructed
from the high-energy bin image (52–120 keV) at the same level as A. The image noise for both the low- and high-energy bins is higher than that
of the PCD image reconstructed from all detected photons because each bin contains only a subset of all detected photons. The low-energy
bins provide good gray matter–white matter differentiation but are susceptible to beam-hardening, best seen as an artifactual increase in
attenuation of the cortical GM and the subarachnoid space (arrows in B). The high-energy photons are less susceptible to beam-hardening but
have poorer GM–WM differentiation. The image reconstructed from all photons is a trade-off between the good GM–WM differentiation of
the low-energy image and the lower beam-hardening artifacts of the high-energy images.

Table 3: Image-quality comparison between energy-integrating
detector and photon-counting detector CT for gray matter,
white matter, and CSF

Image-Quality
Index EIDa PCDa

P
Value

Improvement
Ratiob (%)

GM noise (HU) 3.9 � 1.0 3.2 � 0.5 �.001 17.9
WM noise (HU) 3.4 � 0.8 2.7 � 0.7 .002 20.6
CSF noise (HU) 3.9 � 0.8 3.4 � 0.7 �.001 12.8
GM SNR 10.5 � 2.5 12.6 � 2.2 �.001 19.0
WM SNR 9.5 � 2.3 11.4 � 2.7 .01 20.0
GM–WM

contrast (HU)
8.9 � 1.8 10.3 � 1.9 .02 15.7

GM–WM CNR 1.8 � 0.5 2.4 � 0.8 �.001 33.3
a Values are means � SD.
b Improvement ratio was defined as the difference between EID and PCD quality indices
(image noise, SNR, GM–WM contrast, and CNR) divided by the EID quality index.

Table 4: Attenuation values and image-quality comparison
between photon-counting detector low-energy and high-energy
bin images for gray matter, white matter, and CSF

Low-Energy
Bin (22–52

keV)a

High-Energy
Bin (52–120

keV)a
P

Value
Attenuation values (HU)

Basal nuclei GM 41.5 � 2.1 38.3 � 2.1 �.001
Internal capsule WM 30.9 � 2.7 29.5 � 2.0 .03
Lateral ventricle (CSF) 7.2 � 2.1 4.7 � 1.9 �.001

Image-quality metrics
GM noise (HU) 5.4 � 1.2 4.5 � 0.9 .004
WM noise (HU) 5.0 � 1.6 3.9 � 0.7 .01
CSF noise (HU) 4.9 � 0.9 4.7 � 1.2 .36
GM SNR 8.2 � 2.1 8.9 � 1.8 .11
WM SNR 6.7 � 1.9 7.7 � 1.6 .05
GM–WM contrast (HU) 10.6 � 2.3 8.8 � 2.5 .02
GM–WM CNR 1.5 � 0.5 1.5 � 0.5 .96

a Values are means � SD.
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of other intracranial conditions such as hemorrhage, demyelinat-

ing diseases, and masses.26-28 However, dedicated future studies

are warranted to assess the potential impact of PCD technology

on the diagnostic accuracy of brain CT.

Besides improved overall image quality for photon-counting

CT of the brain, spectral imaging is inherent with this new type of

CT detector. Similar to dual-energy CT, PCDs can use the atten-

uation measurements acquired with different energy spectra to

differentiate materials.29 Material classification has mostly been

examined in contrast-enhanced CT but may also play an impor-

tant role in noncontrast brain CT (eg, differentiation between

hemorrhage and calcification).30 Image analysis of the energy bins

confirmed better GM–WM contrast for the low-energy images

compared with the high-energy images; however, the low-energy

images were more susceptible to beam-hardening artifacts. The

PCD images reconstructed from all detected photons combined

the good GM–WM differentiation of the low-energy image with

the lower beam-hardening artifacts of the high-energy images.

Further studies in patients with intracranial pathology are be

needed to determine whether PCD CT may result in improved

perception of brain abnormalities.

Although PCDs are already being used in nuclear medicine

and mammography, the high x-ray photon flux required for body

CT imaging has been a major challenge for photon-counting

technology until recently. When incident x-ray photons are too

close in time to be counted separately by the PCDs at high x-ray

photon flux, multiple photons are counted as 1 photon. This phe-

nomenon is known as “pulse pileup” and negatively affects image

quality, Hounsfield unit accuracy, and material decomposition.8

However, recent advances in PCD technology with high-speed

application-specific integrated circuits and small pixel sizes have

led to the development of PCDs resistant to pulse pileup at clini-

cally routine CT tube currents.15 Another PCD artifact is charge

sharing, which occurs when the energy of an x-ray photon is dis-

tributed across multiple adjacent detector pixels, reducing the

accuracy of the detected photon energy.8 Multiple anti-charge-

sharing techniques are currently being developed to limit this

artifact.31,32

There are several limitations of this study. Unlike the EID sys-

tem, the current implementation of the PCD prototype does not

support z-flying focal spot technology. This feature resulted in

increased PCD streaking artifacts, especially in the infratentorial

region (eg, the posterior fossa). However, these are not a limita-

tion of photon-counting technology but rather of the proto-

type implementation. Second, radiation dose–saving technol-

ogies such as tube-current modulation and model-based

iterative reconstruction were not available for the PCD system;

therefore, the performance of PCD could not be assessed

under these conditions. Finally, experienced neuroradiologists

blinded to detector type preferred the PCD image quality to

that of EID CT. However, further studies are needed to deter-

mine whether this preference would translate to clinically

meaningful differences for brain lesion detection. On the other

hand, it appears likely that the lower image noise for PCD

could be used to reduce the radiation dose while providing

“always on” spectral x-ray information.

CONCLUSIONS
Qualitative and quantitative analyses of human brain PCD CT

scans demonstrated better GM–WM differentiation than conven-

tional EID CT, due to higher soft-tissue contrast and lower image

noise of photon-counting detectors.
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