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ABSTRACT

BACKGROUND AND PURPOSE: Synthetic FLAIR images are of lower quality than conventional FLAIR images. Here, we aimed to improve
the synthetic FLAIR image quality using deep learning with pixel-by-pixel translation through conditional generative adversarial network
training.

MATERIALS AND METHODS: Forty patients with MS were prospectively included and scanned (3T) to acquire synthetic MR imaging and
conventional FLAIR images. Synthetic FLAIR images were created with the SyMRI software. Acquired data were divided into 30 training and
10 test datasets. A conditional generative adversarial network was trained to generate improved FLAIR images from raw synthetic MR
imaging data using conventional FLAIR images as targets. The peak signal-to-noise ratio, normalized root mean square error, and the Dice
index of MS lesion maps were calculated for synthetic and deep learning FLAIR images against conventional FLAIR images, respectively.
Lesion conspicuity and the existence of artifacts were visually assessed.

RESULTS: The peak signal-to-noise ratio and normalized root mean square error were significantly higher and lower, respectively, in
generated-versus-synthetic FLAIR images in aggregate intracranial tissues and all tissue segments (all P � .001). The Dice index of lesion
maps and visual lesion conspicuity were comparable between generated and synthetic FLAIR images (P � 1 and .59, respectively).
Generated FLAIR images showed fewer granular artifacts (P � .003) and swelling artifacts (in all cases) than synthetic FLAIR images.

CONCLUSIONS: Using deep learning, we improved the synthetic FLAIR image quality by generating FLAIR images that have contrast
closer to that of conventional FLAIR images and fewer granular and swelling artifacts, while preserving the lesion contrast.

ABBREVIATIONS: cGAN � conditional generative adversarial network; DL � deep learning; GAN � generative adversarial network; NRMSE � normalized root
mean square error; PSNR � peak signal-to-noise ratio

The synthetic MR imaging technique can be used to create any

contrast-weighted image, including T1-weighted, T2-weighted,

and FLAIR images, based on the R1 and R2 relaxation rates (in-

verse of T1 and T2 relaxation times) and proton density.1 Syn-

thetic MR imaging has become clinically feasible due to the devel-

opment of rapid and simultaneous relaxometric methods,2 which

have high repeatability and reproducibility across different ven-

dors.3 The synthetic MR imaging quality4-6 and its clinical utility

for evaluating brain diseases7-10 have been widely investigated.

Synthetic MR imaging has the potential to reduce scan times in

clinical settings, where multiple contrast-weighted images are

usually required. Although the synthetic T1-weighted and T2-

weighted image quality is comparable with that of conventional

images, the synthetic FLAIR image quality is generally inferior to

that of conventional FLAIR images,4,6 thus hindering the intro-

duction of synthetic MR imaging into routine clinical practice.

Synthetic FLAIR images reportedly show more artifacts than

other contrasts,6 including hyperintensity on the brain-CSF inter-
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face with apparently swollen brain parenchyma,7,11 and granular

hyperintensities in the CSF, neither of which have been reported

for conventional FLAIR.6 Hence, methods that can improve the

synthetic FLAIR image quality are necessary.

One such method, deep learning (DL), has been applied to

medical images for various purposes,12,13 particularly generative

adversarial networks (GANs),14 which have been used for noise

reduction15 and resolution improvement.16 The GAN technique

uses an image generator, which generates a new image similar to

the input target image, and a discriminator, which differentiates

the target and generated images. The image generator and discrim-

inator are simultaneously trained to transcend each other. A condi-

tional GAN (cGAN) is a newly proposed technique that conditions

the output on the input to render the same underlying information

between the input and output, ultimately keeping the generated im-

age realistic.17 However, a problem in applying DL to clinical image

processing is its generative nature, which is driven by down/up sam-

pling operations, including convolution and deconvolution. When

DL is used to process nonmedical images, it often generates artificial

objects in empty space or eliminates observed objects.17 While these

are useful features when using DL to synthesize photos from label

maps and colorize images,17 these features may be harmful when

applied to clinical images.

To solve these issues, we propose using a pixel-by-pixel neural

network function as a generator to improve the synthetic FLAIR

image quality. This pixel-by-pixel neural network operation sets

the kernel size and stride of all convolutional layers to 1, thus

minimizing the possibility of generating artificial objects or eras-

ing true information by ensuring that the 2 identical input pixel

values become the same output pixel value. Because conventional

FLAIR images, which were used as the target, were acquired sep-

arately from the input images, we trained the generator model

with a cGAN-type learning system to avoid any adverse misregis-

tration effects between the input and target images.

MATERIALS AND METHODS
Study Participants
This prospective study recruited 40 patients with MS between

December and May 2017. Patients were diagnosed according to

standard criteria.18 The MR imaging data were screened for severe

motion artifacts. The first 30 consecutive subjects (11 men; mean

age, 43.37 � 9.36 years; median Expanded Disability Status Scale

score, 1; range, 0 – 6; mean disease duration, 10.6 � 6.94 years)

were used as a training set, and the last 10 subjects (2 men; mean

age, 44.7 � 12.27 years; median Expanded Disability Status Scale

score, 2.5; range, 0 – 4.5; mean disease duration, 10.56 � 8.62

years) were used as a test set. The institutional review board of

Juntendo University Hospital, Japan, approved this Health Insur-

ance Portability and Accountability– compliant study, and all

participants provided written informed consent.

Image Acquisition
All MR imaging was performed on a 3T system (Discovery

MR750w; GE Healthcare, Milwaukee, Wisconsin) with a 19-

channel head coil. All patients underwent synthetic MR imaging

and conventional FLAIR imaging. We performed MR relaxom-

etry with a 2D axial pulse sequence. This is a multisection, multi-

echo, multisaturation delay saturation-recovery turbo spin-echo

acquisition method in which images are collected with different

TE and saturation delay time combinations.2 Typically, 2 TEs and

4 delay times are used to generate a matrix of 8 complex images,

which are then used to quantify the longitudinal R1 relaxation

and transverse R2 relaxation rates and proton density.19 The ac-

quisition parameters for quantitative synthetic MR imaging were

as follows: TE, 16.9 and 84.5 ms; delay times, 146, 546, 1879, and

3879 ms; TR, 4.0 seconds; FOV, 240 � 240 mm; matrix, 320 �

320; echo-train length, 10; bandwidth, 31.25 kHz; section thick-

ness/gap, 4.0/1.0 mm; slices, 30; and acquisition time, 7 minutes

12 seconds. The SyMRI software (Version 8.0; SyntheticMR,

Linköping, Sweden) was used to retrieve the R1, R2, and proton-

density maps on the basis of the acquired data and to create syn-

thetic FLAIR (with postprocessing TR, 15,000 ms; TE, 100 ms; TI,

3000 ms) and T1-weighted (with postprocessing TR, 500 ms; TE,

10 ms) images. Intracranial tissue masks were also created with

the SyMRI software.20 Postprocessing time on the SyMRI soft-

ware was around 30 seconds in total using a workstation (HP

Z230 Tower Workstation; Hewlett-Packard Japan, Tokyo, Japan)

comprising Windows 7 (64-bit version; 16 GB memory) and a

central processing unit (Xeon Processor E3–1281 v3; Intel, Santa

Clara, California).

The acquisition parameters for conventional FLAIR imaging

were as follows: TR, 9000 ms; TE, 124 ms; TI, 2472 ms; FOV,

240 � 240 mm; matrix, 320 � 224; echo-train length, 16; section

thickness/gap, 4.0/1.0 mm; number of slices, 30; and acquisition

time, 2 minutes 33 seconds.

DL Framework
We designed a pixel-wise translation network that receives raw

synthetic MR imaging data and outputs FLAIR images by trans-

lating the input signal intensities into FLAIR images pixel by pixel

using the same weight function across all pixels. Because some of

the raw data information may have been lost when creating the

synthetic FLAIR images using previous Bloch simulation-based

algorithms,2 we supposed that using the raw data as the DL input

would improve the synthetic FLAIR image quality. Figure 1A

shows the precise architecture of the generator model. The image

generator used herein includes 2 parallel fully connected neural

network streamlines that accept the same input from their com-

mon former layer. Each of the parallel networks outputs 1 value;

then, these are multiplied by each other to rejoin the divided

streamlines immediately before the final output. One of the 2

networks contains 1 hidden layer consisting of 128 nodes with

logistic sigmoid activation and 1 output node with squaring acti-

vation to ensure that the output value is non-negative. Squaring

activation was chosen here to simulate FLAIR contrast that usu-

ally takes the absolute signal values from the acquired data while

keeping the differential coefficients continuous. However, this

network generated T2-weighted-like images rather than FLAIR-

like images. Hence, to suppress the signals of CSF, we applied 1

more network that contains 1 hidden layer consisting of 128

nodes with exponential linear unit activation and 1 output node

with logistic sigmoid activation to ensure that the output value is

between 0 and 1. We used the exponential linear unit here rather

than the rectified linear unit because the exponential linear
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unit is less nonlinear and the learning process may become

more stable.21

The training routine is divided into 2 steps: In the first step, the

generator produces coarse FLAIR images, which allow the next

GAN optimization to start with a condition that is relatively close

to the convergent state. The training model is also constructed in

this step to minimize the mean absolute error compared with the

corresponding synthetic FLAIR images. These synthetic FLAIR

images were preprocessed before this step with additional signal

suppression of some specific areas, namely part of the CSF, to

avoid misleading the generator to create hyperintense signals on

the brain surface, a known major artifact in synthetic FLAIR im-

ages. Specifically, we roughly estimated the apparent inversion

recovery time and T2 signal intensity of each voxel and then man-

ually modified the original synthetic FLAIR pixel value to zero

where the inversion recovery time was �0.3 and the T2 signal

intensity was �0.7. We estimated the apparent inversion recovery

time by subtracting the signal intensity ratio of the fifth-to-sev-

enth raw data images from 1. Similarly, the apparent T2 signal

intensity was estimated by subtracting the signal intensity ratio of

the eighth-to-seventh raw data images from 1. Although this es-

timation process was rough, it was sufficient to achieve the first

step because miscalibration and suppression of signals in other

areas similar to those of CSF, if any, are supposed to be corrected

in the GAN training step 2. During the training step 1, fifteen

patches (128 � 128 pixels) were randomly selected from the syn-

thetic MR imaging raw data (512 � 512 pixels) as a batch, and the

model was trained batch-wise for 100,000 iterations with updat-

ing of the generator by the Adam22 rule with � � 0.0005, �1 � 0.9,

and �2 � 0.999. Simultaneously, for efficiency, the discriminator

used in step 2 was pretrained by receiving generated and target

images of the same size and updated by the Adam rule with � �

0.000001, �1 � 0.9, and �2 � 0.999. Figure 1B shows the precise

architecture of the discriminator.

In the second phase of the 3 training steps, we set up a cGAN

training strategy with patches. Figure 1C shows a conceptual de-

scription of the cGAN training system. We set the pretrained dis-

criminator as the initial state and continued the training to allow

it to discriminate generated images and conventional true FLAIR

images while also updating the generator. From the synthetic MR

imaging raw data, 15 patches were randomly selected as a batch

and fed into generator to yield FLAIR images. The generated im-

ages were again fed into the discriminator, which received target

images (conventional FLAIR patches) and minimized the classi-

fication loss. Classification loss was determined as the average of

C(D) � C(1 �D), where C is the cross-entropy item and D is the

logistic sigmoid output of the discriminator. This averaging op-

eration was performed along both batches and pixels to normalize

the loss. From the discriminator, the generator received the neg-

ative of the classification loss for its generated images. To stabilize

the training, the discriminator was designed to return the classi-

fication results pixel by pixel in different resolutions. We used

multiresolution classification that is similar to the structure of

U-Net (https://lmb.informatik.uni-freiburg.de/people/ronneber/

u-net/), which has been mainly used for semantic segmentation.23

With this segmentation task-like architecture of the discriminator,

the mode collapse phenomenon that frequently occurs in GAN

training24 was not observed in this study.

FIG 1. A, Illustration describing the generator. B, Illustration describing the discriminator. C, The framework describing the training phase of our
proposed cGAN model for improving the synthetic FLAIR image quality. BN indicates batch normalization; Conv, convolution; eLU, exponential
linear unit; ch, channel.
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Although several techniques for stabilizing GAN training have

been discussed in the field of machine learning,25-27 the discrimina-

tor architecture devised herein for stabilizing GAN training has not

been reported previously. In this study, we used the same weight

across different pixels and resolutions. For training, 15 patches

(128 � 128 pixels) were randomly selected from the synthetic MR

imaging raw data (512 � 512 pixels) as a batch and 100,000 iterations

were performed with updating of the generator by the Adam rule in

which � � 0.00001, �1 � 0.5, and �2 � 0.999 and updating of the

discriminator by the Adam rule where � � 0.000001, �1 � 0.9, and

�2�0.999. All model training was performed on a computer with 64

GB of CPU memory, Xeon E5–2670 v3 CPU (Intel), and a TITAN Xp

graphics processing unit (NVIDIA, Santa Clara, California). The

computer program was coded with Python 3.6 (https://www.

python.org/downloads/release/python-360/) and the DL framework

of Chainer 3.2.0 (http://chainer.org/). The FLAIR images generated

by the proposed DL scheme are hereafter denoted as DL-FLAIR

images.

Evaluation of the Model

Quantitative Evaluation. To quantitatively compare the syn-

thetic and DL-FLAIR image quality, we used the peak signal-

to-noise ratio (PSNR), normalized root mean square error

(NRMSE), and lesion maps derived from these images. Conven-

tional FLAIR images were registered to synthetic FLAIR images

using the FMRIB Software Library (FSL; http://www.fmrib.ox.

ac.uk/fsl).28 First, mean square error maps were calculated for

synthetic and DL-FLAIR images against registered conventional

FLAIR images, and the PSNR was defined as:

PSNR � 20 log10

25,500

�MSE
,

where 25,500 is the maximum range of the FLAIR signal intensity.

Next the squared root of the mean square errors was calculated

and scaled by dividing by the mean signal intensity of synthetic

and DL-FLAIR images, respectively, after applying the intra-

cranial masks, to produce NRMSE maps. Notably, images with

a higher PSNR and lower NRMSE theoretically exhibit higher

image quality.29 Synthetic T1-weighted images, which were inher-

ently aligned to synthetic FLAIR images, were skull-stripped by the

intracranial masks and segmented into GM, WM, and CSF using the

FMRIB Automated Segmentation Tool (FAST; http://fsl.fmrib.ox.

ac.uk/fsl/fslwiki/fast). No gross error was visually observed in this

segmentation step. Each tissue map and intracranial mask were used

to extract the PSNR and NRMSE metrics in the GM, WM, CSF, and

aggregate intracranial tissues.

Conventional FLAIR images were linearly coregistered to syn-

thetic FLAIR images using SPM 12 software (http://www.fil.

ion.ucl.ac.uk/spm). The WM lesions on these images were auto-

matically segmented using a lesion-prediction algorithm30 in the

Lesion Segmentation Toolbox, Version 2.0.15 (http://www.

applied-statistics.de/lst.html),31 running under SPM 12. Lesion

maps were manually corrected by an experienced neuroradiolo-

gist (A.H.) with 7 years of experience. The Dice index, which

represents the percentage of overlap between 2 image sets, of le-

sion maps was calculated between synthetic or DL-FLAIR images

and conventional FLAIR images.

Qualitative Evaluation. We screened the training and test DL-

FLAIR image sets for artificial object creation or large signal drop-

outs and confirmed that no DL-FLAIR image had these artifacts.

Image quality was visually assessed by an experienced neuroradi-

ologist (C.A.) with 8 years of experience. Synthetic and DL-FLAIR

images were assessed in random order. Lesion conspicuity in each

patient was rated on a 5-point scale (1, very bad; 2, bad; 3, accept-

able; 4, good; and 5, excellent). The existence of artifacts (surface

hyperintensity, granular artifacts, and other artifacts that substan-

tially degrade image quality) was also rated as follows: 1, none; 2,

minimal; 3, moderate; 4, remarkable; and 5, highly remarkable.

Because parenchymal swelling artifacts were difficult to evaluate

on separate images, synthetic and DL-FLAIR images for each pa-

tient were simultaneously shown to the neuroradiologist (C.A.)

for further evaluation using the overlay function of the FSLeyes

viewer (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes).

Statistical Analysis
Statistics were computed using R (version 3.2.1; http://www.

r-project.org/). Because not all the datasets were normally distrib-

uted when analyzed by the Shapiro-Wilk test, we used the non-

parametric Wilcoxon signed rank test to compare the quantitative

and qualitative scores between synthetic and DL-FLAIR images.

The PSNR and NRMSE values were also compared among the

GM, WM, and CSF on synthetic or DL-FLAIR images. Signifi-

cance was set at P � .05 (2-sided). Multiple comparison correc-

tion was not performed.

RESULTS
Figure 2 shows images from a representative patient. The Table

shows the PSNR and NRMSE of synthetic and DL-FLAIR images

calculated against conventional FLAIR images. The PSNR was

significantly higher for DL-FLAIR than synthetic FLAIR images in

GM, WM, CSF, and aggregate intracranial tissues (all P � .001).

The PSNR of synthetic and DL-FLAIR images was the lowest in

GM, with WM showing lower values than CSF (all P � .001). The

NRMSE was significantly lower for DL-FLAIR than synthetic

FLAIR images in GM, WM, CSF, and aggregate intracranial tis-

sues (all P � .001). The NRMSE of synthetic and DL-FLAIR im-

ages was the highest in GM, with WM showing higher values than

CSF (all P � .001). The mean Dice index of lesion maps against

conventional FLAIR images was comparable between DL-FLAIR

(0.57 � 0.17) and synthetic FLAIR images (0.55 � 0.14) (P � 1).

No significant differences in lesion conspicuity, existence of

surface hyperintensity artifacts, or the presence of other artifacts

were identified between synthetic FLAIR and DL-FLAIR images

(3.8 � 0.40 versus 3.7 � 0.46, P � .59; 3 � 0.77 versus 3.1 � 1.04,

P � .78; and 1 � 0 versus 1 � 0; P � 1, respectively). However,

fewer granular artifacts were present in the CSF of DL-FLAIR

(2.3 � 0.90) than synthetic FLAIR (4 � 1.1) images (P � .003; Fig

3). During the simultaneous evaluation of synthetic and DL-

FLAIR images, the neuroradiologist agreed that though hyperin-

tensity artifacts were still visible in some parts of the brain surface

on DL-FLAIR images, the brain parenchyma looked grossly swol-

len on all synthetic FLAIR images compared with the DL-FLAIR

images (Fig 4).
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DISCUSSION
To our knowledge, our study is the first to use a DL algorithm to

improve the synthetic FLAIR image quality. Here, the PSNR and

NRMSE were higher and lower, respectively, in all tissue segments

in DL-FLAIR than in synthetic FLAIR images, meaning that DL-

FLAIR images more accurately replicated conventional true

FLAIR images. Although synthetic FLAIR images rely on the well-

established Bloch equation,2,32 this approach may not be the best

for replicating true FLAIR images.

In our study, lesion delineation was comparable between syn-

thetic and DL-FLAIR images in patients with MS. Hence, the pro-

posed DL scheme might enable reliable delineation of parenchymal

lesions. However, this should be confirmed by a future study with a

systematic reading session for various dis-

eases including brain tumors or

encephalitis.

Herein, while some perceived surface

hyperintensity remained, brain paren-

chymal swelling artifacts were improved

in all patients. Hagiwara et al7 reported

that 3 false-positives and 157 true MS

plaques were detected by an experienced

neuroradiologist on synthetic MR im-

ages. Because these false-positives were

located in the sulci, our proposed model

may decrease the number of false-posi-

tives in clinical practice. Although it has

not been previously discussed, these ar-

tifacts may derive from the unavoidable

partial volume effects at tissue boundar-

ies, considering that the NRMSE on syn-

thetic FLAIR images in our study was the

highest in the GM compared with the

WM and CSF. However, the current

synthetic MR imaging technique ad-

opted a monoexponential decay model

assuming a homogeneous voxel2 and

may not appropriately produce the

FLAIR signal in a voxel with �1 tissue compartment. While our

proposed DL model may have succeeded in partially solving the

multiexponential signal decay at tissue boundaries, applying the

single function to all voxels may not be ideal, especially for voxels

with different tissue mixtures. Future studies should focus on us-

ing different weight functions for different tissue mixtures in a

voxel using DL.

In the current study, granular artifacts in the CSF were mini-

mized by the DL model. Although the exact origin of such artifacts

remains unknown, Tanenbaum et al6 reported that they were ob-

served in up to 59.2% of synthetic FLAIR images and typically

disappeared on rescanning. The DL model proposed herein can

reduce the number of rescans to avoid these artifacts. However,

when the possibility of CSF pathology is minimal on the basis of

clinical history, one may just ignore these granular artifacts. While

prior studies confirmed the high repeatability of quantitative val-

ues derived from quantitative synthetic MR imaging,3,33 the eval-

uated value ranges mainly focused on brain tissues; hence, quan-

titative values in the CSF range may not be precisely measured by

quantitative synthetic MR imaging, resulting in granular artifacts

in the CSF on synthetic FLAIR images.

Our GAN training approach using a pixel-wise simple neural

network as a generator was successful in this study. Our model did

not generate obvious artificial objects because its architecture en-

sured that the 2 identical pixel values in the input became the same

output pixel values. This property is essential for medical imaging

because it will not mislead clinicians. An important contribution

of our study is the implementation of such a structurally restricted

generator trained by a GAN. Recently, a pixel-wise neural net-

work translation model was used to approximate the dictionary in

MR fingerprinting,34 and the training method used the same ac-

quired data for the input and target, allowing it to learn the time-

FIG 2. Synthetic FLAIR (A), DL-FLAIR (B), and conventional FLAIR (C) images of a representative
patient. The overall image contrast of the DL-FLAIR image is more similar to that of the conventional
FLAIR image than the contrast of the synthetic FLAIR image, while preserving the lesion contrast. The
NRMSE maps of synthetic FLAIR (D) and DL-FLAIR (E) images against conventional FLAIR images are also
shown. The NRMSE in the intracranial tissues is much larger in the synthetic FLAIR image than in the
DL-FLAIR image. Note that the parenchymal surface shows patchy high NRMSE values on the syn-
thetic FLAIR image, which are reduced but still visible in the DL-FLAIR image.

The PSNR and NRMSE of synthetic FLAIR and DL-FLAIR images
against conventional FLAIR images in various regionsa

Synthetic
FLAIR Images DL-FLAIR Images

GM
PSNR 27.16 � 0.54b,c 34.03 � 1.33b,c (�25.31%)
NRMSE 0.47 � 0.039b,c 0.33 � 0.028b,c (�30.44%)

WM
PSNR 29.51 � 0.44b,c 35.45 � 1.48b,c (�20.14%)
NRMSE 0.37 � 0.025b,c 0.27 � 0.024b,c (�27.32%)

CSF
PSNR 34.83 � 1.37b,c 40.47 � 1.37b,c (�16.21%)
NRMSE 0.29 � 0.027b,c 0.21 � 0.017b,c (�27.36%)

Aggregate
intracranial
tissues

PSNR 29.79 � 0.71b 35.90 � 1.21b (�20.54%)
NRMSE 0.38 � 0.024b 0.27 � 0.016b (�28.66%)

a Values are means � SD. Percentage changes in the PSNR and NRMSE for DL-FLAIR vs
synthetic FLAIR images are in parentheses.
b P � .001 for synthetic FLAIR vs DL-FLAIR images.
c P � .001 for GM vs WM, GM vs CSF, and WM vs CSF.
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consuming conventional reconstruction method of MR finger-

printing by DL. Because we aimed to train the generator to create

FLAIR images resembling conventional FLAIR images from raw

synthetic MR imaging data, positional differences between the

input and target data were unavoidable. The 2 approaches for

overcoming positional difference were to use a GAN based on

patches and to calibrate the positional deviation and take the ab-

solute error as a loss.

In the first approach based on

patches, adversarial loss represents the

complex reality expressions of generated

patches by comparing them with

patches of target images (conventional

true FLAIR images herein) rather than

pixel-wise similarity between generated

images and target images. Thus, the

GAN trains a generator to create visually

realistic images while ignoring the ef-

fects of positional differences between

input and target images. Conversely, the

latter method to take error as a loss re-

portedly leads a generator to create unrealistic blurry images.35

Therefore, we adopted a GAN approach based on patches. Be-

cause there was an imbalance of power in the competing genera-

tor and discriminator owing to fewer parameters in the generator

without a convolutional architecture, the training required vari-

ous stabilization measures, including learning-rate adjustments,

guidance to the initial state by a mean absolute error loss function

with synthetic FLAIR images, and segmentation-like discrimina-

tor architecture. To our knowledge, this study is the first to train a

generator using a GAN without down/up sampling operations.

The present study has some limitations. First, we did not ex-

plicitly compare the qualities of DL-FLAIR and conventional

FLAIR images. Additional studies are required to investigate

whether DL-FLAIR images with further image-quality improve-

ment can serve as substitutes for conventional FLAIR images in

clinical settings. Second, data from only 1 scanner were used in

this study. Hence, future studies should assess the generalizability

of our results using more patients and several scanners. Third, we

did not perform a reading study to count the number of MS

plaques. This was due to broad diffusely abnormal white matter

and/or fused plaques in some of our patient data. Fourth, only 30

cases were used for training the DL algorithm used in this study.

Considering the large number of pixels per case, we thought that

30 scans could substantially cover the possible signal distributions

of the synthetic MR imaging raw data. However, this assumption

should be confirmed by checking the signal distributions of large

datasets. In the future, the products of the DL algorithm in our

study should also be applied to and validated with disease pro-

cesses spanning various appearances and tissue compartments.

CONCLUSIONS
We successfully improved the synthetic FLAIR image quality us-

ing DL, thus creating FLAIR images that have contrast similar to

that of conventional FLAIR images, with fewer swelling artifacts

and minimal granular artifacts in the CSF, while preserving lesion

contrast. The proposed DL algorithm may facilitate the introduc-

tion of synthetic MR imaging into clinical practice.
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