Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editorial Board
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editorial Board
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleADULT BRAIN
Open Access

Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation

A. Hagiwara, Y. Otsuka, M. Hori, Y. Tachibana, K. Yokoyama, S. Fujita, C. Andica, K. Kamagata, R. Irie, S. Koshino, T. Maekawa, L. Chougar, A. Wada, M.Y. Takemura, N. Hattori and S. Aoki
American Journal of Neuroradiology January 2019, DOI: https://doi.org/10.3174/ajnr.A5927
A. Hagiwara
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)cDepartment of Radiology (A.H., R.I., S.K., T.M.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Hagiwara
Y. Otsuka
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)dMilliman Inc (Y.O.). Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Otsuka
M. Hori
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Hori
Y. Tachibana
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)eApplied MRI Research (Y.T.), Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, Chiba, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y. Tachibana
K. Yokoyama
bNeurology (K.Y., N.H.), Juntendo University School of Medicine, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Yokoyama
S. Fujita
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Fujita
C. Andica
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Andica
K. Kamagata
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Kamagata
R. Irie
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)cDepartment of Radiology (A.H., R.I., S.K., T.M.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R. Irie
S. Koshino
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)cDepartment of Radiology (A.H., R.I., S.K., T.M.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Koshino
T. Maekawa
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)cDepartment of Radiology (A.H., R.I., S.K., T.M.), Graduate School of Medicine, University of Tokyo, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T. Maekawa
L. Chougar
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)fDepartment of Radiology (L.C.), Hopital Saint-Joseph, Paris, France; and Department of Radiological Sciences.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for L. Chougar
A. Wada
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Wada
M.Y. Takemura
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.Y. Takemura
N. Hattori
bNeurology (K.Y., N.H.), Juntendo University School of Medicine, Tokyo, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for N. Hattori
S. Aoki
aFrom the Departments of Radiology (A.H., Y.O., M.H., Y.T., S.F., C.A., K.K., R.I., S.K., T.M., L.C., A.W., M.Y.T., S.A.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Aoki
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

REFERENCES

  1. 1.↵
    1. Bobman SA,
    2. Riederer SJ,
    3. Lee JN, et al
    . Cerebral magnetic resonance image synthesis. AJNR Am J Neuroradiol 1985;6:265–69 pmid:2984911
    Abstract/FREE Full Text
  2. 2.↵
    1. Warntjes JB,
    2. Leinhard OD,
    3. West J, et al
    . Rapid magnetic resonance quantification on the brain: optimization for clinical usage. Magn Reson Med 2008;60:320–29 doi:10.1002/mrm.21635 pmid:18666127
    CrossRefPubMed
  3. 3.↵
    1. Hagiwara A,
    2. Hori M,
    3. Cohen-Adad J, et al
    . Linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative multidynamic multiecho sequence for rapid simultaneous relaxometry at 3 T: a validation study with a standardized phantom and healthy controls. Invest Radiol 2019;54:39–47 doi:10.1097/RLI.0000000000000510 pmid:30300164
    CrossRefPubMed
  4. 4.↵
    1. Blystad I,
    2. Warntjes JB,
    3. Smedby O, et al
    . Synthetic MRI of the brain in a clinical setting. Acta Radiol 2012;53:1158–63 doi:10.1258/ar.2012.120195 pmid:23024181
    CrossRefPubMed
  5. 5.↵
    1. Granberg T,
    2. Uppman M,
    3. Hashim F, et al
    . Clinical feasibility of synthetic MRI in multiple sclerosis: a diagnostic and volumetric validation study. AJNR Am J Neuroradiol 2016;37:1023–29 doi:10.3174/ajnr.A4665 pmid:26797137
    Abstract/FREE Full Text
  6. 6.↵
    1. Tanenbaum LN,
    2. Tsiouris AJ,
    3. Johnson AN, et al
    . Synthetic MRI for clinical neuroimaging: results of the Magnetic Resonance Image Compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 2017;38:1103–10 doi:10.3174/ajnr.A5227 pmid:28450439
    Abstract/FREE Full Text
  7. 7.↵
    1. Hagiwara A,
    2. Hori M,
    3. Yokoyama K, et al
    . Synthetic MRI in the detection of multiple sclerosis plaques. AJNR Am J Neuroradiol 2017;38:257–63 doi:10.3174/ajnr.A5012 pmid:27932506
    Abstract/FREE Full Text
  8. 8.↵
    1. Hagiwara A,
    2. Hori M,
    3. Yokoyama K, et al
    . Analysis of white matter damage in patients with multiple sclerosis via a novel in vivo magnetic resonance method for measuring myelin, axons, and g-ratio. AJNR Am J Neuroradiol 2017;38:1934–40 doi:10.3174/ajnr.A5312 pmid:28775058
    Abstract/FREE Full Text
  9. 9.↵
    1. Andica C,
    2. Hagiwara A,
    3. Nakazawa M, et al
    . Synthetic MR imaging in the diagnosis of bacterial meningitis. Magn Reson Med Sci 2017;16:91–92 doi:10.2463/mrms.ci.2016-0082 pmid:28003620
    CrossRefPubMed
  10. 10.↵
    1. Wallaert L,
    2. Hagiwara A,
    3. Andica C, et al
    . The advantage of synthetic MRI for the visualization of anterior temporal pole lesions on double inversion recovery (DIR), phase-sensitive inversion recovery (PSIR), and myelin images in a patient with CADASIL. Magn Reson Med Sci 2018;17:275–76 doi:10.2463/mrms.ci.2017-0110 pmid:29238005
    CrossRefPubMed
  11. 11.↵
    1. Helmersson T
    . Evaluation of Synthetic MRI for Clinical Use [master's thesis]. Department of Medical and Health Sciences. Linköping: Linköping University; 2010. http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A389732&dswid=9594. Accessed August 30, 2018:71
  12. 12.↵
    1. Yasaka K,
    2. Akai H,
    3. Kunimatsu A, et al
    . Deep learning with convolutional neural network in radiology. Jpn J Radiol 2018;36:257–72 doi:10.1007/s11604-018-0726-3 pmid:29498017
    CrossRefPubMed
  13. 13.↵
    1. Nakao T,
    2. Hanaoka S,
    3. Nomura Y, et al
    . Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging 2018;47:948–53 doi:10.1002/jmri.25842 pmid:28836310
    CrossRefPubMed
  14. 14.↵
    1. Goodfellow I,
    2. Pouget-Abadie J,
    3. Mirza M, et al
    . Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems; 2014:2672–80
  15. 15.↵
    1. Wolterink JM,
    2. Leiner T,
    3. Viergever MA, et al
    . Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 2017;36:2536–45 doi:10.1109/TMI.2017.2708987 pmid:28574346
    CrossRefPubMed
  16. 16.↵
    1. Kim KH,
    2. Do WJ,
    3. Park SH
    . Improving resolution of MR images with an adversarial network incorporating images with different contrast. Med Phys 2018;45:3120–31 doi:10.1002/mp.12945 pmid:29729006
    CrossRefPubMed
  17. 17.↵
    1. Isola P,
    2. Zhu J,
    3. Zhou T, et al
    . Image-to-image translation with conditional adversarial networks. arXiv:161107004 2017. http://adsabs.harvard.edu/abs/2016arXiv161107004I. Accessed August 13, 2018
  18. 18.↵
    1. Polman CH,
    2. Reingold SC,
    3. Banwell B, et al
    . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302 doi:10.1002/ana.22366 pmid:21387374
    CrossRefPubMedWeb of Science
  19. 19.↵
    1. Hagiwara A,
    2. Warntjes M,
    3. Hori M, et al
    . SyMRI of the brain: rapid quantification of relaxation rates and proton density, with synthetic MRI, automatic brain segmentation, and myelin measurement. Invest Radiol 2017;52:647–57 doi:10.1097/RLI.0000000000000365 pmid:28257339
    CrossRefPubMed
  20. 20.↵
    1. Ambarki K,
    2. Lindqvist T,
    3. Wählin A, et al
    . Evaluation of automatic measurement of the intracranial volume based on quantitative MR imaging. AJNR Am J Neuroradiol 2012;33:1951–56 doi:10.3174/ajnr.A3067 pmid:22555574
    Abstract/FREE Full Text
  21. 21.↵
    1. Clevert D,
    2. Unterthiner T,
    3. Hochreiter S
    . Fast and accurate deep network learning by exponential linear units (ELUs). arXiv:151107289 2015. http://adsabs.harvard.edu/abs/2015arXiv151107289C. Accessed October 5, 2018
  22. 22.↵
    1. Kingma D,
    2. Ba J
    . Adam: a method for stochastic optimization. arXiv:14126980 2014. https://arxiv.org/abs/1412.6980. Accessed August 22, 2018
  23. 23.↵
    1. Ronneberger O,
    2. Fischer P,
    3. Brox T
    . U-Net: convolutional networks for biomedical image segmentation. arXiv:150504597 2015. http://adsabs.harvard.edu/abs/2015arXiv150504597R. Accessed October 6, 2018
  24. 24.↵
    1. Lin G,
    2. Khetan G,
    3. Fanti G, et al
    . PacGAN: the power of two samples in generative adversarial networks. arXiv:171204086 2017. https://arxiv.org/abs/1712.04086. Accessed August 23, 2018
  25. 25.↵
    1. Salimans T,
    2. Goodfellow I,
    3. Zaremba W, et al
    . Improved techniques for training GANs. arXiv:160603498 2016. http://adsabs.harvard.edu/abs/2016arXiv160603498S. Accessed August 28, 2018
  26. 26.↵
    1. Huszár F
    . How (not) to train your generative model: scheduled sampling, likelihood, adversary? arXiv:151105101 2015. http://adsabs.harvard.edu/abs/2015arXiv151105101H. Accessed August 28, 2018
  27. 27.↵
    1. Arjovsky M,
    2. Bottou L
    . Towards principled methods for training generative adversarial networks. arXiv:170104862 2017. http://adsabs.harvard.edu/abs/2017arXiv170104862A. Accessed August 28, 2018
  28. 28.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  29. 29.↵
    1. Wang Y,
    2. Yu B,
    3. Wang L, et al
    . 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 2018;174:550–62 doi:10.1016/j.neuroimage.2018.03.045 pmid:29571715
    CrossRefPubMed
  30. 30.↵
    1. Egger C,
    2. Opfer R,
    3. Wang C, et al
    . MRI FLAIR lesion segmentation in multiple sclerosis: does automated segmentation hold up with manual annotation? Neuroimage Clin 2017;13:264–70 doi:10.1016/j.nicl.2016.11.020 pmid:28018853
    CrossRefPubMed
  31. 31.↵
    1. Schmidt P,
    2. Gaser C,
    3. Arsic M, et al
    . An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage 2012;59:3774–83 doi:10.1016/j.neuroimage.2011.11.032 pmid:22119648
    CrossRefPubMed
  32. 32.↵
    1. Maitra R,
    2. Riddles JJ
    . Synthetic magnetic resonance imaging revisited. IEEE Trans Med Imaging 2010;29:895–902 doi:10.1109/TMI.2009.2039487 pmid:20199923
    CrossRefPubMed
  33. 33.↵
    1. Krauss W,
    2. Gunnarsson M,
    3. Andersson T, et al
    . Accuracy and reproducibility of a quantitative magnetic resonance imaging method for concurrent measurements of tissue relaxation times and proton density. Magn Reson Imaging 2015;33:584–91 doi:10.1016/j.mri.2015.02.013 pmid:25708264
    CrossRefPubMed
  34. 34.↵
    1. Cohen O,
    2. Zhu B,
    3. Rosen MS
    . MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med 2018;80:885–94 doi:10.1002/mrm.27198 pmid:29624736
    CrossRefPubMed
  35. 35.↵
    1. Welander P,
    2. Karlsson S,
    3. Eklund A
    . Generative adversarial networks for image-to-image translation on multi-contrast MR images: a comparison of CycleGAN and UNIT. arXiv:180607777 2018. https://arxiv.org/abs/1806.07777. Accessed August 28, 2018
PreviousNext
Back to top
Advertisement
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
Citation Tools
Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation
A. Hagiwara, Y. Otsuka, M. Hori, Y. Tachibana, K. Yokoyama, S. Fujita, C. Andica, K. Kamagata, R. Irie, S. Koshino, T. Maekawa, L. Chougar, A. Wada, M.Y. Takemura, N. Hattori, S. Aoki
American Journal of Neuroradiology Jan 2019, DOI: 10.3174/ajnr.A5927

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Improving the Quality of Synthetic FLAIR Images with Deep Learning Using a Conditional Generative Adversarial Network for Pixel-by-Pixel Image Translation
A. Hagiwara, Y. Otsuka, M. Hori, Y. Tachibana, K. Yokoyama, S. Fujita, C. Andica, K. Kamagata, R. Irie, S. Koshino, T. Maekawa, L. Chougar, A. Wada, M.Y. Takemura, N. Hattori, S. Aoki
American Journal of Neuroradiology Jan 2019, DOI: 10.3174/ajnr.A5927
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • Materials and Methods
    • Results
    • Discussion
    • Conclusions
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Scopus
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Scopus (3)
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

  • Diffusion Properties of Normal-Appearing White Matter Microstructure and Severity of Motor Impairment in Acute Ischemic Stroke
  • Visualization of Nigrosome 1 from the Viewpoint of Anatomic Structure
  • Decreased Subcortical T2 FLAIR Signal Associated with Seizures
Show more ADULT BRAIN

Similar Articles

Advertisement

News and Updates

  • 2018 Lucien Levy Best Research Article Award
  • Thanks to our 2019 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2019 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire