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ORIGINAL RESEARCH
SPINE

Deep Learning–Based Automatic Segmentation of Lumbosacral
Nerves on CT for Spinal Intervention: A Translational Study

X G. Fan, X H. Liu, X Z. Wu, X Y. Li, X C. Feng, X D. Wang, X J. Luo, X W.M. Wells III, and X S. He

ABSTRACT

BACKGROUND AND PURPOSE: 3D reconstruction of a targeted area (“safe” triangle and Kambin triangle) may benefit the viability
assessment of transforaminal epidural steroid injection, especially at the L5/S1 level. However, manual segmentation of lumbosacral nerves
for 3D reconstruction is time-consuming. The aim of this study was to investigate the feasibility of deep learning– based segmentation of
lumbosacral nerves on CT and the reconstruction of the safe triangle and Kambin triangle.

MATERIALS AND METHODS: A total of 50 cases of spinal CT were manually labeled for lumbosacral nerves and bones using Slicer 4.8.
The ratio of training/validation/testing was 32:8:10. A 3D U-Net was adopted to build the model SPINECT for automatic segmen-
tations of lumbosacral structures. The Dice score, pixel accuracy, and Intersection over Union were computed to assess the
segmentation performance of SPINECT. The areas of Kambin and safe triangles were measured to validate the 3D reconstruction.

RESULTS: The results revealed successful segmentation of lumbosacral bone and nerve on CT. The average pixel accuracy for bone was
0.940, and for nerve, 0.918. The average Intersection over Union for bone was 0.897 and for nerve, 0.827. The Dice score for bone was 0.945,
and for nerve, it was 0.905. There were no significant differences in the quantified Kambin triangle or safe triangle between manually
segmented images and automatically segmented images (P � .05).

CONCLUSIONS: Deep learning– based automatic segmentation of lumbosacral structures (nerves and bone) on routine CT is feasible, and
SPINECT-based 3D reconstruction of safe and Kambin triangles is also validated.

ABBREVIATIONS: ESI � epidural steroid injection; IoU � Intersection over Union; tESI � transforaminal epidural steroid injection

Low back pain with a radicular component is a common ail-

ment in many clinics and is a leading cause of disability and

adds a great burden to health care costs globally.1,2 It is difficult to

detect the specific etiology, but the pain is usually caused by in-

flammation of nerves due to mechanical compression or chemical

irritation.3 Lumbar degenerative disease, including spinal stenosis

and lumbar disc herniation, is a main culprit of low back pain and

radicular symptoms. Before spinal surgery, epidural steroid injec-

tion (ESI) is an interventional option for the management of low

back and radicular pain.4,5 Transforaminal epidural steroid injec-

tion (tESI) is a well-validated technique with merits of large dis-

tributions of injectate and superior short-term pain relief com-

pared with an interlaminar or caudal approach.6,7 Typically, tESI

is conducted via a “safe” triangle, while others prefer via a Kambin

triangle because the safe triangle has been found to sometimes not

be safe.8 The Kambin triangle is defined as an anatomic triangle

with the nerve root (hypotenuse), traversing nerve root and/or

facet joint (height), and superior border of a lower vertebra (base)

as its components.9 The safe triangle is defined as the lower mar-

gin of the pedicle (base), the lateral border of the vertebral body

(height), and the outer border of the exiting nerve (hypote-

nuse).10 Because the 2 triangles are 3D, the targeted area of tESI is

variable from different views or even totally concealed by bony
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structures such as a high iliac crest, enlarged transverse process,

and facet joint, especially at the L5/S1 level.10-12 An increased area

of the safe triangle and Kambin triangle should lead to more fre-

quent successful outcomes of tESI.10 Complications of tESI such

as intravascular injection and nerve root injury cause serious

problems.13,14

X-ray fluoroscopy is the criterion standard to guide tESI.15

The bony landmark “Scotty dog” is identified to estimate the

targeted area to present larger areas of the safe triangle or

Kambin triangle. The C-arm machine is usually tilted to a cer-

tain angle to conduct an oblique fluoroscopy to identify the

Scotty dog.16 However, x-ray fluoroscopy is incapable of pro-

viding information about soft tissues and localizing the needle

tip in a real-time manner. Thus, CT fluoroscopy is introduced

to guide the tESI because it can quickly and safely localize

needles and minimize the risk of nerve injury.17 Usually, an

initial CT scan with good image quality is obtained for viability

assessment of the tESI, during which an ideal needle trajectory

is planned on a single axial CT slice.18 Then, a CT fluoroscopy

technique is used to guide the needle advancement on a single

CT slice during which soft tissue is poorly presented on im-

ages.18 Therefore, a larger targeted area of needle advancement

should reduce the risk of injuring the neurovascular structure.

However, the CT plane is incapable of directly and quickly

identifying an accessible trajectory targeting the largest safe or

Kambin triangle, and sometimes the CT plane presents no ac-

cessible pathway on all axial slices. Instead, 3D construction of

the safe or Kambin triangle may benefit the viability assess-

ment of the tESI. Free manipulation of the 3D model will

quickly identify an oblique needle pathway targeting the large

safe triangle or Kambin triangle. However, manual segmenta-

tion of lumbosacral nerves for 3D reconstruction is

time-consuming.

Recently, deep learning has gained substantial attention in

the field of radiology.19-22 Deep learning algorithms can learn

from large amounts of data using neural networks, frequently

convolutional neural networks.23 Al-

though convolutional neural networks
were proposed decades ago, it is only
in the past 7 years that deep learning
has achieved great success due to mas-
sive available data, increased process-

ing power, and rapid development of
algorithms.23 The U-Net (https://

lmb.informatik.uni-freiburg.de/peo

ple/ronneber/u-net/) is a kind of
convolutional neural network that was
developed for biomedical image
segmentation by Ronneberger et al24

in 2015, and it has many applications

in the segmentation of 2D images. In

2016, the same group developed a 3D

U-Net (https://www.researchgate.net/

publication/304226155_3D_U-Net_

Learning_Dense_Volumetric_Segmenta

tion_from_Sparse_Annotation) for vol-

umetric segmentation as an extension

architecture of the U-Net.25 Many

studies have validated the segmentation performance of the 3D

U-Net for volumetric medical images.26-28 To the best of our

knowledge, no studies are available on achieving automatic

segmentation of lumbosacral nerves on CT. The aim of this

study was to investigate the feasibility of automatically seg-

menting lumbosacral structures (nerves and bone) on CT with

the 3D U-Net and the reconstruction of the safe and Kambin

triangles.

MATERIALS AND METHODS
This retrospective study was Health Insurance Portability and Ac-

countability Act–compliant and approved by the institutional ethical

committee of Shanghai Tenth People’s Hospital before data extrac-

tion. A total of 50 patients with thin-layer CT covering the lumbosa-

cral level from Shanghai Tenth People’s Hospital were included in

this study. All algorithms were developed and tested using Keras

(Version 2.1.1 with tensorflow_backend.py; http://pydoc.net/Keras/

2.1.2/keras.preprocessing.image/) in a personal computer (graphics

processing unit: a Nvidia GeForce 1080Ti, https://www.nvidia.com/

en-us/geforce/products/10series/geforce-gtx-1080-ti/, with 4 GB of

memory and a 3.5-GHz Intel Core i7–4790 CPU with 8 GB of

memory).

Manual Annotations
All data were manually segmented with Slicer 4.8 (http://www.

slicer.org).29 Lumbosacral nerves and bones were meticulously

segmented and labeled (Fig 1A, -B). A spine surgeon who is an

expert in reading lumbar CT and had systematic training in Slicer

manually segmented the nerves and bones. Then the segmented

images were reviewed by an interventional radiologist and pain

physician, both of whom are experts in CT-guided epidural ste-

roid injection. Any disagreements of segmentation were solved by

the 3 doctors voting. These manual annotations were regarded as

the ground truth.

FIG 1. Manual segmentation and 3D reconstruction on Slicer. A, manual labels. B, 3D reconstruc-
tion with a coronal image. C, Illustrations of the Dice score, Intersection-over-Union, and pixel
accuracy.
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Data Preprocessing and Segmentation Assessment
All thin-layer CT scans were preprocessed using the following

steps: resampling, cropping, and intensity normalization (On-

line Appendix). Pixel accuracy, Intersection over Union (IoU),

and the Dice score were used to assess the segmentation perfor-

mance of lumbosacral structures (Fig 1C). The functions of these

3 indicators are as follows:

Dice Score � 2 � True Predicted Voxels/(Predicted Voxels �

True Voxels)

IoU � True Predicted Voxels/(Predicted Voxels � True

Voxels)

Pixel Accuracy � True Predicted Voxels/True Voxels.

Because the Dice score is the most common indicator in com-

puter vision,30 the current study adopted it as the primary index

to assess the segmentation performance.

Network Architecture
The 3D U-Net was adopted for multiclass segmentation of lum-

bosacral structures (Fig 2). The adopted network consists of 2

parts, the encoder and the decoder parts. The encoder part performs

data analysis and feature-representation learning from the input

data, and the decoder part generates segmentation results. There are

also 4 shortcut connections (concatenations) between layers of equal

resolution in the encoder and decoder paths. The last layer of the

model is a 1 � 1 � 1 convolutional layer followed by a softmax layer

(https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.

layer.softmaxlayer.html), with 3 output channels. The input of the

model is 32 � 64 � 64 voxel patches of CT. The output is the corre-

sponding probability mask, and its shape is 32 � 64 � 64 � 3. The

whole architecture has 22,581,411 parameters. The developed model

is named SPINECT because it aims to automatically segment multi-

ple structures solely on the basis of spinal CT.

Training
During the training phase, a number of minibatch CT and manual

labeling masks are randomly selected from the training dataset,

and the image data are subjected to the standardization process-

ing and the augmentation operation. As a result, the training data

input to each training iteration is different, and this feature im-

proves the generalization ability of the model. The convolutional

layer parameters of 3D U-Net are initialized by the method of He

et al.31 The size of the patch (depth � height � width) input to the

3D U-Net during training is 32 � 64 � 64 (unit:voxel); the mini-

batch is 4, which is optimized by the Adam optimization algo-

rithm32; and the learning rate is 5e-4. We selected the Adam op-

timization algorithm instead of stochastic gradient descent for

training the deep learning network because it was straightforward

to implement and computationally efficient.

Five-Fold Validation
During model training, 1 validation was performed every 100

training iterations. Specifically, 6 cases were randomly selected

from the validation dataset for standard processing. The stan-

dard processing included several sequential steps: 1) Set the

voxel size to 1 mm by the nearest interpolation method, and 2)

standardization. Then, we added random noise plus random

horizontal and vertical flipping to augment the selected cases.

A sliding window of 32 � 64 � 64 was used to traverse the data

with stride � (20 � 40 � 40) to obtain the patch. The patch is

input to the current model; then the model generates the cor-

responding probability mask. Finally, the automatic seg-

mented mask is obtained with a combined algorithm (Table 1).

The Dice score of each voxel class is obtained with comparison

of the automatic segmented mask and the manually labeled

mask. If the average of the Dice score is greater than the prior

best Dice score by the current iteration, the current model

parameters will be saved. We use a combined algorithm in

which the patch-based CNN is applied at a sequence of patches

of the data, and the resulting label probabilities are summed

according to their voxel location. Subsequently, the labels are

established by the probabilities.

FIG 2. Schematic of the network architecture.

Table 1: Overview of the combined algorithm
Algorithm 1: Combined Algorithm

Require: X: CT volume, shape � D � H � W
Require: xi�X(Li), (i�1, .… ,k): CT voxel patch
Require: yi � M�xi�: yi is the output of the last layer (softmax

activation function) of the model M, yi has 1 more dimension
than xi, and this dimension has 3 channels. Each channel refers
to the probability of the corresponding voxel belonging to
background or bone or nerve, respectively.

1) Initialize: Y4 0
2) For xi � X,�i � 1, … ,k� do
3) Y�Li,:� � � yi
4) End for
5) S4 arg max(Y, axis � �1) (find the channel with the largest

value in the last dimension)
6) Return S (the automatic mask)

Note:—M indicates the model (network); L, location of the CT voxel patch x at the
CT volumn X; Y, summed probability; max, maximum.
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Testing
The ratio of training, validation, and testing of the 50 cases from

our local dataset is 32:8:10. A total of 10 cases randomly selected

from the local dataset were tested on SPINECT. To validate the

robustness of our trained model, we also conducted cross-dataset

testing on 10 cases from an on-line imaging dataset (SpineWeb;

http://spineweb.digitalimaginggroup.ca/).33 Pixel accuracy, IoU,

and the Dice score were used to assess the segmentation perfor-

mance of lumbosacral structures.

Radiographic Evaluation
To compare the difference between manually segmented masks

and automatically generated masks, we present a random slice

from each case. In addition, 3D render-

ing of manual masks before preprocess-

ing, post-preprocessing masks, auto-

matically generated masks, as well as

smoothed 3D rendering of automati-

cally generated masks (smoothing

method: median; Kernel size: 1.5 mm)

are also presented. To further investi-

gate the segmentation performance of

SPINECT, we measured both Kambin

and safe triangles at the L5/S1 level on

both sides on manually segmented and

automatically segmented images (Fig 3).

First, the Kambin triangle and safe tri-

angle were visualized on Slicer with 3D

rendering of manually and automati-

cally segmented labels. Then, the

Kambin triangle and safe triangle were

set with the same angles between man-

ually and automatically segmented im-

ages. Screenshots were obtained and im-

ported into Image J software (Version

1.8.0_112; National Institutes of Health,

Bethesda, Maryland) for area measure-

ments of the Kambin and safe triangles.

Two independent observers measured

the area of the 2 triangles from manually

and automatically segmented images.

One month later, one of the observers

measured the area of the 2 triangles

again. The intraclass correlation coeffi-

cient was calculated to assess test-retest

reliability and interobserver reliability of

multiple measurements.

Statistical Analysis
The generated labels from SPINECT

were used to generate the 3D rendering

of bones and nerves on Slicer. After testing the normal distribu-

tion (Shapiro-Wilk test), we used a paired Student t test to detect

statistically significant differences of the safe and Kambin trian-

gles between manually segmented images and automatically seg-

mented images. All continuous data are presented as mean 	 SD,

and a P value 
.05 is a statistically significant difference.

RESULTS
Testing results revealed that SPINECT could achieve successful

segmentation of multiple structures (bones and nerves) on CT

(Fig 4). Quantitative segmentation accuracy is shown in Table 2.

The average pixel accuracy for the bones was 0.940, and for the

nerves, 0.918. The average IoU for the bones was 0.897, and for the

nerves, it was 0.827. The Dice score for the bones was 0.945, and

for the nerves, it was 0.905. In each validation fold, it took about 4

hours 35 minutes to finish the training of the segmentation net.

After training, SPINECT requires a total RAM space of 305.384

MB, and it takes about 3.1 seconds (Nvidia GeForce 1080Ti) to

complete an automatic segmentation on a single case (On-line

FIG 3. Measurement of safe and Kambin triangles. A, Schematics of the Kambin triangle. B,
Schematics of the safe triangle. C, Measurement of the Kambin triangle on a manually segmented
image. D, Measurement of the safe triangle on automatically segmented images.

FIG 4. Automatic and manually labeled masks.

Table 2: Segmentation accuracy in 10 testing casesa

Structures Pixel Accuracy (%) IoU (%) Dice Score (%)
Bones 94.05 	 6.68 89.73 	 4.32 94.54 	 2.43

(82.0–99.9) (82.0–95.2) (90.1–97.5)
Nerves 91.43 	 3.48 82.71 	 3.25 90.51 	 1.94

(85.3–94.4) (76.3–87.4) (86.6–93.2)
a Data are means and percentages unless otherwise noted.
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Table). In total, it took about 13 seconds to process 1 set of CT

data (from data uploading and data preprocessing to semantic

segmentation) with a graphics processing unit (Nvidia GeForce

1080Ti), which is far less than the 30 minutes for manual segmen-

tation. Besides, the segmentation performance of 10 cases from

SpineWeb was similar to that of our testing dataset (Table 3).

More important, there were no significant differences in the

measured area of the safe or Kambin triangle between manual

images and automatic images (Table 4). The area of Kambin tri-

angle was 37.80 	 20.90 mm2 on manual images and 36.41 	

19.27 mm2 on automatic images (P � .302). The area of the safe

triangle was 8.69 	 2.24 mm2 on manual images and 8.56 	 3.25

mm2 on automatic images (P � .792). The reliability test revealed

strong test-retest reliability and interobserver reliability of multi-

ple measurements (Table 5). As in Fig 5, 3D rendering of auto-

matic masks was similar to that of post-preprocess masks, and 3D

rendering of manual masks was similar to that of smoothed auto-

matic masks. Moreover, dura compression was clearly present in

the four 3D rendered images.

DISCUSSION
Knowledge of bony and neurovascular anatomy of the spinal fo-

ramen is essential when performing tESI.34 However, the Kambin

or safe triangle has never been visualized before tESI. Thin-layer

CT has great potential for reconstructing the safe and Kambin

triangles, whereas manual segmentation of nerve roots is time-

consuming. The current study has validated the feasibility of au-

tomatically segmenting lumbosacral structures (nerves and bone)

on CT through deep learning and the 3D reconstruction of

Kambin and safe triangles. To the best of our knowledge, this is

the first study automatically segmenting lumbosacral nerves on

CT through deep learning.

Reconstruction of the safe or Kambin triangle may benefit the

viability assessment of tESI, especially at the L5/S1 level. Ideally,

the needle trajectory is planned on an axial plane of conventional

CT slices.10 However, trajectory planning could be difficult at the

L5/S1 level in some cases due to the bony obstacles such as the iliac

crest, facet joint, and transverse process (Fig 6). In that case, an

accessible pathway could be found in an oblique perspective.

However, operators may fail to quickly identify an oblique trajec-

tory targeting the largest safe or Kambin triangle, even if the CT

gantry can be tentatively angled caudally or cranially. Another

option is to change the targeted area (eg, from the safe to the

Kambin triangle) for trajectory planning.35 Nevertheless, axial CT

slices are still incapable of presenting a large safe or Kambin tri-

angle directly and quickly. Thus, 3D reconstruction of the safe or

Kambin triangle may facilitate the viability assessment of tESI

because it can quickly provide the specific perspective with a large

Table 3: Segmentation accuracy in 10 testing cases from the open
dataseta

Structures Pixel Accuracy (%) IoU (%) Dice Score (%)
Bones 99.62 	 0.35 81.40 	 11.33 89.34 	 7.28

(99.3–99.9) (60.5–93.3) (75.42–96.5)
Nerves 87.74 	 4.82 80.64 	 3.31 89.25 	 2.00

(79.4–93.1) (75.5–82.9) (88.1–93.4)
a Data are means and percentages unless otherwise noted.

Table 4: Measured area of the safe and Kambin trianglesa

Area
(mm2) Manual Images Automatic Images

P
Value

Kambin
triangle

37.80 	 20.90 (15.11–87.51) 36.41 	 19.27 (11.46–78.63) .302

Safe
triangle

8.69 	 2.24 (6.04–13.27) 8.56 	 3.25 (3.18–17.91) .792

a Data are means and percentages unless otherwise noted.

Table 5: Test-retest reliability and interobserver reliability of
multiple measurements

Intraclass Correlation
Coefficient

Test-Retest
Reliability

Interobserver
Reliability

3D rendering of manual segmentation
Kambin triangle 0.983 0.984
Safe triangle 0.881 0.922

3D rendering of automatic segmentation
Kambin triangle 0.988 0.982
Safe triangle 0.977 0.959

FIG 5. 3D rendering of automatic masks and manually labeled masks
of bones and nerves. A, 3D rendering of manual masks before prepro-
cessing. B, 3D rendering of post-preprocessed masks. C, 3D rendering
of automatically generated masks. D, Smoothed 3D rendering of au-
tomatically generated masks. E, 3D rendering of manual masks before
preprocessing (arrow indicates the compressed dura). F, 3D rendering
of post-preprocessed masks (arrow indicates the compressed dura).
G, 3D rendering of automatically generated masks (arrow indicates
the compressed dura). H, Smoothed 3D rendering of automatically
generated masks (arrow indicates the compressed dura).
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targeted area. Ra and Min10 tried to identify an optimal angle of a

nonaxial needle path with the largest area of the safe triangle for

x-ray fluoroscopic guidance, but others thought a specific needle

path is dictated by specific patient anatomy and cannot be consis-

tently predicted using a constant angle. With free manipulation of

3D-rendering models, an oblique needle path could be planned

when a large area of the safe triangle or Kambin triangle is pre-

sented (Fig 6C, -E). Our study also quantified the area of the safe

or Kambin triangle, which might also help assess the viability of

specific approaches. The area of the safe triangle ranged from 4 to

18 mm2 in our series, which is similar to that in the previous

study.10 The area of the Kambin triangle at the L5/S1 level ranged

from 10 to 84 mm2 in our series, which is smaller than the results

from other studies36,37 because others removed the facet joint

for measurement. More important, the measurements of tri-

angles in our study confirmed no significant differences be-

tween manually segmented images and automatically seg-

mented images, which validates the 3D reconstruction based

on SPINECT in medical indicators.

Nerve segmentation is essential for visualizing the safe and

Kambin triangles because the exiting nerve root is the hypotenuse

of the 2 triangles. Physicians usually recognize the Scotty dog to

estimate the location of the safe and Kambin triangles under the

guidance of x-ray fluoroscopy because

the exiting nerve root has not yet been

outlined. Moreover, only after multiple

attempted punctures will contrast be in-

jected to show the epidural and perineu-

ral flow, which may finally outline the

nerve root sheath and epidural flow.

Thus, x-ray fluoroscopy fails to demon-

strate the detailed location of the exiting

nerve root before punctures. The main

advantage of CT is that it is good at pre-

cisely locating the needle placement

using 3D imaging of soft tissues and

osseous anatomy.38 Moreover, CT flu-

oroscopy is also capable of demonstrat-

ing real-time contrast flow. Neverthe-
less, nerve segmentation is not yet
available on the current CT worksta-
tions for ESI. Diffusion tensor imaging
or the MR neurography technique may
be useful to enhance the spinal nerves

for diagnosis and surgical planning.37,39

However, DTI or MR neurography

scanning can be lengthy and costly and is

not practical for ESI. In this current

study, however, we have achieved auto-

matic and precise segmentation of lum-

bosacral nerves on routine CT and suc-

cessfully visualized the safe and Kambin

triangles with segmented bones and

nerves.
As more medical imaging datasets

are created by medical experts, the appli-
cation of deep learning in radiology is
growing because of its excellent perfor-

mance in recognition and segmentation. While bony structures

are easily identified in intraoperative practice, deep learning may

enable rapid recognition and precise segmentation of important

soft tissue. Moreover, all paraspinal structures (eg, nerves, vessels,

discs, muscles, ligaments) may also play an important role in pro-

cedure planning, spinal navigation, and even robotic surgery in

the near future. The current study has shown that thin-layer CT is

a good candidate for segmenting nerves, which discloses the sub-

stantial potential of CT in segmenting spinal soft tissue. More-

over, the performance of SPINECT further supports the findings

of other similar studies using U-Net and its variants for semantic

segmentation of biomedical images.40,41 We adopted the 3D U-

Net instead of the 2D U-Net because 3D U-Net can adopt the

information between slices of the CT volume. However, the U-

Net has limitations of class imbalance and decreased segmenta-

tion accuracy. Because the voxels of background, bone, and nerve

are quite different, small structure (nerve) tends to have a lower

Dice score compared with large structures (bone and back-

ground) in semantic segmentation. Thus, we adopted the

weighted softmax cross-entropy loss function, and the outcomes

seemed to be acceptable. Feng et al42 used the U-Net to segment

the spinal cord on thoracic CT with a Dice score of 0.89, which is

FIG 6. 3D model– based viability assessment of a transforaminal epidural steroid injection. A,
Inaccessible trajectory to the safe triangle on an axial CT slice. B, Minimal space of the safe triangle
on the posterior 3D model. C, Accessible oblique trajectory to the safe triangle on the 3D model.
D, Inaccessible trajectory to the Kambin triangle on axial CT slice. E, Accessible trajectory on the
3D model. F, Oblique trajectory-guided nonaxial CT plane.
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similar to our study with a Dice score of 0.905 for lumbosacral

nerves. Novikov et al43 segmented bones on CT on the basis of the

U-Net with a Dice score of 0.95, which is similar to our study with

a Dice score of 0.945 for lumbosacral bones. Furthermore,

SPINECT segments lumbosacral nerves and bones in about 13

seconds, which is much shorter than the 30 minutes needed for

manual segmentation. In summary, the developed model has the

potential to be adopted in the workflow of spinal interventions

and minimally invasive spine surgery.

The current study has limitations. First, this pilot study only

conducted segmentation on the L5/S1 level because it is one of the

most difficult levels for spinal intervention and even for mini-

mally invasive spine surgery. SPINECT will be developed and

tested on more levels (eg, L3/L4, L4/L5) and different spinal re-

gions (eg, thoracic, cervical) in the near future. Second, although

small vessels surrounding the foramen are critical for tESI, we did

not segment pertinent vessels because they were not clear on non-

contrast CT. However, semantic segmentation of multiple struc-

tures (eg, discs, large vessels, muscles, ligaments) will be inte-

grated into SPINECT. Third, while the subject number and

segmentation accuracy are acceptable, more cases may be needed

for the accuracy to be further improved. Last, the automatic loca-

tion of CT planes through deep learning may also help physicians

in planning ESIs, and a large observational study exploring its

feasibility is also on the way.

CONCLUSIONS
Deep learning with a 3D U-Net can effectively segment spinal

nerves and bones from routine CT. The results of this study sug-

gest that our proposed SPINECT can be used to segment spinal

nerves on CT seemingly within near-human expert performance,

which is reliable for reconstructing Kambin and safe triangles for

tESI.
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