Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticlePEDIATRICS
Open Access

Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium

S. Vajapeyam, D. Brown, C. Billups, Z. Patay, G. Vezina, M.S. Shiroishi, M. Law, P. Baxter, A. Onar-Thomas, J.R. Fangusaro, I.J. Dunkel and T.Y. Poussaint
American Journal of Neuroradiology April 2020, DOI: https://doi.org/10.3174/ajnr.A6499
S. Vajapeyam
aFrom the Radiology (S.V., T.Y.P.), Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Vajapeyam
D. Brown
bDF/HCC Tumor Imaging Metrics Core (D.B.), Massachusetts General Hospital, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for D. Brown
C. Billups
cBiostatistics (C.B., A.O.-T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for C. Billups
Z. Patay
dDiagnostic Imaging (Z.P.), St. Jude Children’s Research Hospital, Memphis, Tennessee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Z. Patay
G. Vezina
eRadiology (G.V.), Children’s National Medical Center, Washington, DC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G. Vezina
M.S. Shiroishi
fRadiology (M.S.S.), Keck Medical Center of USC, Los Angeles, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M.S. Shiroishi
M. Law
gNeuroscience (M.L.), Monash University, Melbourne, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for M. Law
P. Baxter
hCancer and Hematology Center (P.B.), Texas Children’s Hospital, Houston, Texas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for P. Baxter
A. Onar-Thomas
cBiostatistics (C.B., A.O.-T.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A. Onar-Thomas
J.R. Fangusaro
iAflac Cancer and Blood Disorders Center (J.R.F.), Children’s Healthcare of Atlanta, Atlanta, Georgia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J.R. Fangusaro
I.J. Dunkel
jPediatrics (I.J.D.), Memorial Sloan Kettering Cancer Center, New York, New York.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for I.J. Dunkel
T.Y. Poussaint
aFrom the Radiology (S.V., T.Y.P.), Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for T.Y. Poussaint
  • Article
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Ostrom QT,
    2. Gittleman H,
    3. Truitt G, et al
    . CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro Oncol 2018;20:iv1–86 doi:10.1093/neuonc/noy131 pmid:30445539
    CrossRefPubMed
  2. 2.↵
    1. Hargrave D,
    2. Bartels U,
    3. Bouffet E
    , Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 2006;7:241–48 doi:10.1016/S1470-2045(06)70615-5 pmid:16510333
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Gallitto M,
    2. Lazarev S,
    3. Wasserman I, et al
    . Role of radiation therapy in the management of diffuse intrinsic pontine glioma: a systematic review. Adv Radiat Oncol 2019;4:520–31 doi:10.1016/j.adro.2019.03.009 pmid:31360809
    CrossRefPubMed
  4. 4.↵
    1. Lemasson B,
    2. Wang H,
    3. Galban S, et al
    . Evaluation of concurrent radiation, temozolomide and ABT-888 treatment followed by maintenance therapy with temozolomide and ABT-888 in a genetically engineered glioblastoma mouse model. Neoplasia 2016;18:82–89 doi:10.1016/j.neo.2015.11.014 pmid:26936394
    CrossRefPubMed
  5. 5.↵
    1. Yuan AL,
    2. Ricks CB,
    3. Bohm AK, et al
    . ABT-888 restores sensitivity in temozolomide resistant glioma cells and xenografts. PLoS One 2018;13:e0202860 doi:10.1371/journal.pone.0202860 pmid:30153289
    CrossRefPubMed
  6. 6.↵
    1. Poussaint TY,
    2. Vajapeyam S,
    3. Ricci KI, et al
    . Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol 2016;18:725–34 doi:10.1093/neuonc/nov256 pmid:26487690
    CrossRefPubMed
  7. 7.↵
    1. Wan B,
    2. Wang S,
    3. Tu M, et al
    . The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: a meta-analysis. Medicine (Baltimore) 2017;96:e6333 doi:10.1097/MD.0000000000006333 pmid:28296759
    CrossRefPubMed
  8. 8.↵
    1. Calmon R,
    2. Puget S,
    3. Varlet P, et al
    . Multimodal magnetic resonance imaging of treatment-induced changes to diffuse infiltrating pontine gliomas in children and correlation to patient progression-free survival. Int J Radiat Oncol Biol Phys 2017;99:476–85 doi:10.1016/j.ijrobp.2017.04.007 pmid:28871999
    CrossRefPubMed
  9. 9.↵
    1. Thomas AA,
    2. Arevalo-Perez J,
    3. Kaley T, et al
    . Dynamic contrast enhanced T1 MRI perfusion differentiates pseudoprogression from recurrent glioblastoma. J Neurooncol 2015;125:183–90 doi:10.1007/s11060-015-1893-z pmid:26275367
    CrossRefPubMed
  10. 10.↵
    1. Fram EK,
    2. Herfkens RJ,
    3. Johnson GA, et al
    . Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn Reson Imaging 1987;5:201–08 doi:10.1016/0730-725X(87)90021-X pmid:3626789
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Tofts PS
    . Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91–101 doi:10.1002/jmri.1880070113 pmid:9039598
    CrossRefPubMedWeb of Science
  12. 12.↵
    1. Boxerman JL,
    2. Schmainda KM,
    3. Weisskoff RM
    . Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006;27:859–67 pmid:16611779
    Abstract/FREE Full Text
  13. 13.↵
    1. Jenkinson M,
    2. Bannister P,
    3. Brady M, et al
    . Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002;17:825–41 doi:10.1006/nimg.2002.1132 pmid:12377157
    CrossRefPubMedWeb of Science
  14. 14.↵
    1. Jenkinson M,
    2. Beckmann CF,
    3. Behrens TE, et al
    . FSL. Neuroimage 2012;62:782–90 doi:10.1016/j.neuroimage.2011.09.015 pmid:21979382
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Schindelin J,
    2. Arganda-Carreras I,
    3. Frise E, et al
    . Fiji: an open-source platform for biological-image analysis. Nat Methods 2012;9:676–82 doi:10.1038/nmeth.2019 pmid:22743772
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Strimmer K
    . fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008;24:1461–62 doi:10.1093/bioinformatics/btn209 pmid:18441000
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Benjamini Y,
    2. Hochberg Y
    . Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 1995;57:289–300 doi:10.1111/j.2517-6161.1995.tb02031.x
    CrossRef
  18. 18.↵
    1. Hargrave D,
    2. Chuang N,
    3. Bouffet E
    . Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neurooncol 2008;86:313–19 doi:10.1007/s11060-007-9473-5 pmid:17909941
    CrossRefPubMed
  19. 19.↵
    1. Kilburn LB,
    2. Kocak M,
    3. Baxter P, et al
    . A Pediatric Brain Tumor Consortium phase II trial of capecitabine rapidly disintegrating tablets with concomitant radiation therapy in children with newly diagnosed diffuse intrinsic pontine gliomas. Pediatr Blood Cancer 2018;65 doi:10.1002/pbc.26832 pmid:29090526
    CrossRefPubMed
  20. 20.↵
    1. Poussaint TY,
    2. Kocak M,
    3. Vajapeyam S, et al
    . MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro Oncol 2011;13:417–27 doi:10.1093/neuonc/noq200 pmid:21297126
    CrossRefPubMed
  21. 21.↵
    1. Jansen MH,
    2. Veldhuijzen van Zanten SE,
    3. Sanchez Aliaga E, et al
    . Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro Oncol 2015;17:160–66 doi:10.1093/neuonc/nou104 pmid:24903904
    CrossRefPubMed
  22. 22.↵
    1. Lobel U,
    2. Sedlacik J,
    3. Reddick WE, et al
    . Quantitative diffusion-weighted and dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging analysis of T2 hypointense lesion components in pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 2011;32:315–22 doi:10.3174/ajnr.A2277 pmid:21087935
    Abstract/FREE Full Text
  23. 23.↵
    1. Sedlacik J,
    2. Winchell A,
    3. Kocak M, et al
    . MR imaging assessment of tumor perfusion and 3D segmented volume at baseline, during treatment, and at tumor progression in children with newly diagnosed diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 2013;34:1450–55 doi:10.3174/ajnr.A3421 pmid:23436052
    Abstract/FREE Full Text
  24. 24.↵
    1. Hipp SJ,
    2. Steffen-Smith E,
    3. Hammoud D, et al
    . Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol 2011;13:904–09 doi:10.1093/neuonc/nor076 pmid:21757444
    CrossRefPubMed
  25. 25.↵
    1. Ceschin R,
    2. Kocak M,
    3. Vajapeyam S, et al
    . Quantifying radiation therapy response using apparent diffusion coefficient (ADC) parametric mapping of pediatric diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. J Neurooncol 2019;143:79–86 doi:10.1007/s11060-019-03133-y pmid:30810873
    CrossRefPubMed
  26. 26.↵
    1. Lobel U,
    2. Hwang S,
    3. Edwards A, et al
    . Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic pontine gliomas during treatment: implications for current response assessment strategies. Neuroradiology 2016;58:1027–34 doi:10.1007/s00234-016-1724-8 pmid:27438806
    CrossRefPubMed
  27. 27.↵
    1. Zukotynski K,
    2. Vajapeyam S,
    3. Fahey FH, et al
    . Correlation of 18F-FDG PET and MR apparent diffusion coefficient (ADC) histogram metrics with survival in diffuse intrinsic pontine glioma: a report from the pediatric brain tumor consortium. J Nucl Med 2017;58:1264–69 doi:10.2967/jnumed.116.185389 pmid:28360212
    Abstract/FREE Full Text
  28. 28.↵
    1. Lober RM,
    2. Cho YJ,
    3. Tang Y, et al
    . Diffusion-weighted MRI derived apparent diffusion coefficient identifies prognostically distinct subgroups of pediatric diffuse intrinsic pontine glioma. J Neurooncol 2014;117:175–82 doi:10.1007/s11060-014-1375-8 pmid:24522717
    CrossRefPubMed
  29. 29.↵
    1. Castel D,
    2. Philippe C,
    3. Calmon R, et al
    . Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 2015;130:815–27 doi:10.1007/s00401-015-1478-0 pmid:26399631
    CrossRefPubMed
  30. 30.↵
    1. Vajapeyam S,
    2. Stamoulis C,
    3. Ricci K, et al
    . Automated processing of dynamic contrast-enhanced MRI: correlation of advanced pharmacokinetic metrics with tumor grade in pediatric brain tumors. AJNR Am J Neuroradiol 2017;38:170–75 doi:10.3174/ajnr.A4949 pmid:27633807
    Abstract/FREE Full Text
  31. 31.↵
    1. Conway AE,
    2. Reddick WE,
    3. Li Y, et al
    . “Occult” post-contrast signal enhancement in pediatric diffuse intrinsic pontine glioma is the MRI marker of angiogenesis? Neuroradiology 2014;56:405–12 doi:10.1007/s00234-014-1348-9 pmid:24626721
    CrossRefPubMed
  32. 32.↵
    1. Kilday JP,
    2. Pringle C,
    3. Kamaly-Asl ID, et al
    . RADI-15: perfusion imaging in presumed pediatric diffuse intrinsic pontine glioma: a UK regional analysis. Neuro Oncol 2018;20(Suppl 2):i172–73 doi:10.1093/neuonc/noy059.655
    CrossRef
  33. 33.↵
    1. Zikou A,
    2. Sioka C,
    3. Alexiou GA, et al
    . Radiation necrosis, pseudoprogression, pseudoresponse, and tumor recurrence: imaging challenges for the evaluation of treated gliomas. Contrast Media Mol Imaging 2018;2018:6828396 doi:10.1155/2018/6828396 pmid:30627060
    CrossRefPubMed
  34. 34.↵
    1. Chassot A,
    2. Canale S,
    3. Varlet P, et al
    . Radiotherapy with concurrent and adjuvant temozolomide in children with newly diagnosed diffuse intrinsic pontine glioma. J Neurooncol 2012;106:399–407 doi:10.1007/s11060-011-0681-7 pmid:21858607
    CrossRefPubMed
  35. 35.↵
    1. Carceller F,
    2. Fowkes LA,
    3. Khabra K, et al
    . Pseudoprogression in children, adolescents and young adults with non-brainstem high grade glioma and diffuse intrinsic pontine glioma. J Neurooncol 2016;129:109–21 doi:10.1007/s11060-016-2151-8 pmid:27180091
    CrossRefPubMed
  36. 36.↵
    1. Ceschin R,
    2. Kurland BF,
    3. Abberbock SR, et al
    . Parametric response mapping of apparent diffusion coefficient as an imaging biomarker to distinguish pseudoprogression from true tumor progression in peptide-based vaccine therapy for pediatric diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 2015;36:2170–76 doi:10.3174/ajnr.A4428 pmid:26338910
    Abstract/FREE Full Text
  37. 37.↵
    1. Calmon R,
    2. Puget S,
    3. Varlet P, et al
    . Cerebral blood flow changes after radiation therapy identifies pseudoprogression in diffuse intrinsic pontine gliomas. Neuro Oncol 2018;20:994–1002 doi:10.1093/neuonc/nox227 pmid:29244086
    CrossRefPubMed
  38. 38.↵
    1. Carceller F,
    2. Jerome NP,
    3. Fowkes LA, et al
    . Post-radiotherapy apparent diffusion coefficient (ADC) in children and young adults with high-grade gliomas and diffuse intrinsic pontine gliomas. Pediatr Hematol Oncol 2019;36:103–12 doi:10.1080/08880018.2019.1592267 pmid:30978130
    CrossRefPubMed
  39. 39.↵
    1. Song YS,
    2. Choi SH,
    3. Park CK, et al
    . True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis. Korean J Radiol 2013;14:662–72 doi:10.3348/kjr.2013.14.4.662 pmid:23901325
    CrossRefPubMedWeb of Science
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium
S. Vajapeyam, D. Brown, C. Billups, Z. Patay, G. Vezina, M.S. Shiroishi, M. Law, P. Baxter, A. Onar-Thomas, J.R. Fangusaro, I.J. Dunkel, T.Y. Poussaint
American Journal of Neuroradiology Apr 2020, DOI: 10.3174/ajnr.A6499

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Advanced ADC Histogram, Perfusion, and Permeability Metrics Show an Association with Survival and Pseudoprogression in Newly Diagnosed Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium
S. Vajapeyam, D. Brown, C. Billups, Z. Patay, G. Vezina, M.S. Shiroishi, M. Law, P. Baxter, A. Onar-Thomas, J.R. Fangusaro, I.J. Dunkel, T.Y. Poussaint
American Journal of Neuroradiology Apr 2020, DOI: 10.3174/ajnr.A6499
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

PEDIATRICS

  • Stroke Recurrence in Children with Vertebral Artery Dissecting Aneurysm
  • An In-Depth Analysis of Brain and Spine Neuroimaging in Children with Abusive Head Trauma: Beyond the Classic Imaging Findings
  • Prenatal MR Imaging Phenotype of Fetuses with Tuberous Sclerosis: An Institutional Case Series and Literature Review
Show more PEDIATRICS

FUNCTIONAL

  • Radio-Pathomic Maps of Cell Density Identify Brain Tumor Invasion beyond Traditional MRI-Defined Margins
  • Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma
  • Interobserver Reliability on Intravoxel Incoherent Motion Imaging in Patients with Acute Ischemic Stroke
Show more FUNCTIONAL

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2021 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2022 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire