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ORIGINAL RESEARCH
ADULT BRAIN

A Stacked Generalization of 3D Orthogonal Deep Learning
Convolutional Neural Networks for Improved Detection of

White Matter Hyperintensities in 3D FLAIR Images
L. Umapathy, G.G. Perez-Carrillo, M.B. Keerthivasan, J.A. Rosado-Toro, M.I. Altbach, B. Winegar, C. Weinkauf, and

A. Bilgin, for the Alzheimer’s Disease Neuroimaging Initiative

ABSTRACT

BACKGROUND AND PURPOSE: Accurate and reliable detection of white matter hyperintensities and their volume quantification
can provide valuable clinical information to assess neurologic disease progression. In this work, a stacked generalization ensemble
of orthogonal 3D convolutional neural networks, StackGen-Net, is explored for improving automated detection of white matter
hyperintensities in 3D T2-FLAIR images.

MATERIALS AND METHODS: Individual convolutional neural networks in StackGen-Net were trained on 2.5D patches from orthogonal
reformatting of 3D-FLAIR (n ¼ 21) to yield white matter hyperintensity posteriors. A meta convolutional neural network was trained to
learn the functional mapping from orthogonal white matter hyperintensity posteriors to the final white matter hyperintensity prediction.
The impact of training data and architecture choices on white matter hyperintensity segmentation performance was systematically eval-
uated on a test cohort (n ¼ 9). The segmentation performance of StackGen-Net was compared with state-of-the-art convolutional neural
network techniques on an independent test cohort from the Alzheimer’s Disease Neuroimaging Initiative-3 (n ¼ 20).

RESULTS: StackGen-Net outperformed individual convolutional neural networks in the ensemble and their combination using averag-
ing or majority voting. In a comparison with state-of-the-art white matter hyperintensity segmentation techniques, StackGen-Net
achieved a significantly higher Dice score (0.76 [SD, 0.08], F1-lesion (0.74 [SD, 0.13]), and area under precision-recall curve (0.84 [SD,
0.09]), and the lowest absolute volume difference (13.3% [SD, 9.1%]). StackGen-Net performance in Dice scores (median ¼ 0.74) did
not significantly differ (P ¼ .22) from interobserver (median ¼ 0.73) variability between 2 experienced neuroradiologists. We found no
significant difference (P ¼ .15) in white matter hyperintensity lesion volumes from StackGen-Net predictions and ground truth
annotations.

CONCLUSIONS: A stacked generalization of convolutional neural networks, utilizing multiplanar lesion information using 2.5D spatial
context, greatly improved the segmentation performance of StackGen-Net compared with traditional ensemble techniques and
some state-of-the-art deep learning models for 3D-FLAIR.

ABBREVIATIONS: ADNI ¼ Alzheimer’s Disease Neuroimaging Initiative; AUC ¼ area under curve; Ax ¼ axial; CNN ¼ convolutional neural network; E-A ¼
ensemble average; E-MV ¼ ensemble majority vote; F1-L ¼ F1 lesion; HD ¼ Hausdorff distance; VD ¼ volume difference; WMH ¼ white matter hyperintensity
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White matter hyperintensities (WMHs) correspond to path-
ologic features of axonal degeneration, demyelination, and

gliosis observed within cerebral white matter.1 Clinically, the
extent of WMHs in the brain has been associated with cognitive
impairment, Alzheimer’s disease and vascular dementia, and
increased risk of stroke.2,3 The detection and quantification of
WMH volumes to monitor lesion burden evolution and its corre-
lation with clinical outcomes have been of interest in clinical
research.4,5 Although the extent of WMHs can be visually
scored,6 the categoric nature of such scoring systems makes
quantitative evaluation of disease progression difficult. Manually
segmenting WMHs is tedious, prone to inter- and intraobserver
variability, and is, in most cases, impractical. Thus, there is an
increased interest in developing fast, accurate, and reliable
computer-aided automated techniques for WMH segmentation.

Convolutional neural network (CNN)-based approaches have
been successful in several semantic segmentation tasks in medical
imaging.7 Recent works have proposed using deep learning–based
methods for segmenting WMHs using 2D-FLAIR images.8-11

More recently, a WMH segmentation challenge12 was also organ-
ized (http://wmh.isi.uu.nl/) to facilitate comparison of automated
segmentation of WMHs of presumed vascular origin in 2D multi-
slice T2-FLAIR images. Architectures that used an ensemble
of separately trained CNNs showed promising results in this
challenge, with 3 of the top 5 winners using ensemble-based
techniques.12

Conventional 2D-FLAIR images are typically acquired with
thick slices (3–4 mm) and possible slice gaps. Partial volume
effects from a thick slice are likely to affect the detection of
smaller lesions, both in-plane and out-of-plane. 3D-FLAIR
images, with isotropic resolution, have been shown to achieve
higher resolution and contrast-to-noise ratio13 and have shown
promising results in MS lesion detection using 3D CNNs.14

Additionally, the isotropic resolution enables viewing and evalua-
tion of the images in multiple planes. This multiplanar reformat-
ting of 3D-FLAIR without the use of interpolating kernels is only
possible due to the isotropic nature of the acquisition. Network
architectures that use information from the 3 orthogonal views
have been explored in recent works for CNN-based segmentation
of 3D MR imaging data.15 The use of data from multiple planes
allows more spatial context during training without the computa-
tional burden associated with full 3D training.16 The use of 3 or-
thogonal views simultaneously mirrors how humans approach
this segmentation task.

Ensembles of CNNs have been shown to average away the
variances in the solution and the choice of model- and configura-
tion-specific behaviors of CNNs.17 Traditionally, the solutions
from these separately trained CNNs are combined by averaging
or using a majority consensus. In this work, we propose the use
of a stacked generalization framework (StackGen-Net) for com-
bining multiplanar lesion information from 3D CNN ensembles
to improve the detection of WMH lesions in 3D-FLAIR. A
stacked generalization18 framework learns to combine solutions
from individual CNNs in the ensemble. We systematically eval-
uated the performance of this framework and compared it with
traditional ensemble techniques, such as averaging or majority
voting, and state-of-the-art deep learning techniques.

MATERIALS AND METHODS
StackGen-Net CNN Architecture
Figure 1A shows an overview of the proposed StackGen-Net
architecture. Our ensemble consists of 3 orthogonal 3D CNNs
(DeepUNET3D), each trained on axial, sagittal, and coronal
reformatting of 3D-FLAIR. This is followed by a stacked general-
ization18 of the orthogonal CNNs using a Meta CNN. The pro-
posed multiscale, fully-connected DeepUNET3D architecture is
shown in Fig 1B. Compared with a UNET,19 DeepUNET3D uses
convolutional blocks instead of convolutional layers. These convo-
lutional blocks consist of a sequence of convolutions with 3D ker-
nels (3 � 3 � 3), batch normalization, and rectified linear
activation layers separated by a dropout layer. A final convolution
layer combines the feature maps in the native resolution space to
generate posterior probabilities for WMHs.

The stacked generalization scheme attempts to maximize
the overall accuracy of the ensemble by deducing the bias
rate of the individual DeepUNET3D CNNs. If we consider
pa; ps; pc, and pf to be the axial, sagittal, coronal, and final
WMH posterior probabilities for a voxel, then the Meta CNN
learns a new functional mapping f :ð Þ from ½0;1�3 to ½0;1� where
pf ¼ f ðpa; p s; pcÞ and pf ; pa; ps; pc 2 ½0; 1�. In this work,
we consider the following mapping:

pf ¼ f pa; ps; pcð Þ ¼ s wa pa þ ws ps þ wc pc þ bð Þ;

where wa; ws; wc are the weights for axial, sagittal, and coronal
posteriors, respectively; b is the bias term, and sð:Þ represents a
softmax operation. These weights are learned during training of
the Meta CNN, which consists of a single convolution layer with
a 1� 1� 1 3D kernel.

Study Population and Image Acquisition
A cohort of 35 subjects was prospectively recruited (2016–2017)
for a study on extracranial carotid artery disease with approval
of the local institutional review board. Adults 50–85 years of
age with extracranial carotid artery disease (50%–90% steno-
sis) based on duplex sonography criteria were recruited from
outpatient clinics/inpatient hospitals. Exclusion criteria
included depression, dementia, MS, and contraindications to
MR imaging.

Sagittal 3D-FLAIR images were acquired using the 3D spatial
and chemical-shift-encoded excitation inversion recovery sequence
on a 3T MR imaging scanner (Magnetom Skyra). Five of the 35
subjects were excluded due to poor FLAIR image quality (motion
artifacts). The remaining study cohort (67.7 [SD, 8.7] years of age;
22 men, 8 women) was randomly split into groups for training
(n¼ 20), validation (n¼ 1), and testing (n¼ 9). These test subjects
formed test cohort 1.

To test the generalizability of the framework, we also eval-
uated its performance on a multi-institutional and multi-scanner
external cohort (test cohort 2) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data base (adni.loni.usc.edu).
The primary goal of ADNI, a public-private partnership led by
Principal Investigator Michael W.Weiner, is to test whether imag-
ing and biologic markers, along with clinical and neuropsycho-
logical assessments, can be combined to measure progression of
mild cognitive impairment and early Alzheimer’s Disease.
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Sagittal 3D-FLAIR volumes from 20 subjects (76.8 [SD,
9.3] years of age; 11 men, 9 women) were selected randomly
from the cognitively normal and mild cognitive impairment
groups. Additional information regarding the acquisition proto-
col and subject-selection criteria for ADNI3 is available in the
Online Supplemental Data.

WMH Annotations
Two neuroradiologists, with certificate of added qualification,
(observers 1 and 2) agreed on the following protocol to annotate
WMH: 1) Deep WMHs should at least be 2mm wide, spanning
more than 1 imaging section; 2) periventricular WMHs should
be.3 mm wide; 3) hyperintense regions due to partial volume
effects near the ventricles or sulci or CSF flow artifacts should
not be included; and 4) no deep gray matter lesions or cortical
hyperintense lesions should be included.

Observer 1 manually annotated WMHs on 3D-FLAIR
images for all the subjects. As part of an interobserver variability
study to establish baseline human performance, observers 1 and 2
independently annotated 60 FLAIR images (12 imaging volumes,
each with 5 consecutive images) from 3 subjects in test cohort 1.
Observer 1 re-annotated these images after 5months from the
first annotations to avoid recall bias; these images were used to
evaluate intraobserver variability. Observers 1 and 2 also

annotated 10 additional subjects (1600
images) from the test cohort 2 to es-
tablish human performance on the
external set. Both observers used an
in-house Matlab (MathWorks)-based
graphical user interface. The observers
manually traced the WMH pixels on
axial cross-sections of the 3D-FLAIR
images. The observers were allowed to
adjust the window width and level to
improve WMH contrast and use 3D
spatial context to annotate/edit/delete
individual WMHmasks.

Training Data
Image preprocessing consisted of skull
stripping,20 N4 bias correction,21 total
variation–based denoising, and con-
trast stretching. The image intensities
were normalized, per subject, using a
zero mean unit SD intensity normal-
ization. Here, the mean signal was cal-
culated from regions within the brain.

3D-FLAIR volumes in the train-
ing set were reformatted to axial, sag-
ittal, and coronal orientations. From
each orientation, overlapping 2.5D
patches (64 � 64 � 7) were extracted
using a sliding window over the
entire brain to train the correspond-
ing orthogonal CNNs. Patches with
,30% brain voxels were discarded.
Training data were generated by

sampling the remaining patches to ensure an equal representa-
tion of patches with and without WMHs. Data augmentation
was performed using the following schemes: in-plane flipping
of patches, through-plane flipping of patches, and image filter-
ing using Gaussian kernels.

Training data for the Meta CNN were generated by first
predicting WMH posteriors for each subject in the training
set using the trained orthogonal CNNs. After being reformat-
ted to the axial orientation, 3D patches (16 � 16 � 16) were
extracted from each of the posteriors and concatenated along
the channel dimension.

During the test phase, 3D-FLAIR images were passed through
the StackGen-Net framework to predict WMHs on the images in
1 pass through the network.

Experiments
Several ablation studies were conducted to systematically evaluate
the choice of training data and architecture made in this study. A
version of the DeepUNET3D architecture with 2D convolution
kernels (DeepUNET2D) was trained on axially oriented 2D
patches (64 � 64) to study the impact of additional spatial con-
text in 2.5D patches onWMH segmentation performance.

We also trained an ensemble of 3 DeepUNET3D CNNs on
axially oriented 2.5D training patches. The final prediction for

FIG 1. A, Overview of the proposed StackGen-Net. B, This consists of 3 DeepUNET3D CNNs,
which are made up of convolutional blocks. The number of output feature maps is presented
next to each convolutional block. Each DeepUNET3D predicts posterior probabilities for WMHs
on orthogonal (axial, sagittal, and coronal) orientations of the 3D-FLAIR volumes. The Meta CNN
combines axial, sagittal, and coronal posterior probabilities for a voxel to yield a final prediction
for WMH. Sag indicates sagittal; Cor, coronal; ReLU, rectified linear unit.

AJNR Am J Neuroradiol �:� � 2021 www.ajnr.org 3



WMHs for this ensemble (DeepUNET3D-Ax E-A) was obtained
by averaging posteriors from individual CNNs. For comparisons,
the WMH posteriors from the orthogonal CNNs used in
StackGen-Net were averaged (orthogonal E-A) or combined
using a majority-voting scheme (orthogonal E-MV). Together,
these experiments allowed us to determine whether a stacked
generalization of orthogonal CNNs improves WMH segmenta-
tion performance.

We also explored the impact of the in-plane and through-
plane spatial extent of the 2.5D training patches on WMH seg-
mentation performance by training a series of DeepUNET3D
CNNs with varying patch sizes.

All experiments were implemented in Python using Keras
(https://keras.io) with TensorFlow (https://www.tensorflow.
org/)22 backend on a Linux system, with Titan P100 (NVIDIA)
GPUs. The CNN implementation details, training parameters, and
loss function definitions are available in the Online Supplemental
Data. The StackGen-Net CNN used in this work will be available
at https://github.com/spacl-ua/wmh-segmentation.

Comparisons with State-of-the-Art Techniques
We compared the performance of StackGen-Net with several
state-of-the-art segmentation techniques. The UNET architec-
ture19 (UNET2D) was modified with zero-padded convolutions
to yield input image–sized predictions. The multiclass cross-en-
tropy loss used in the original article was modified to a weighted
binary cross-entropy function. This CNN was trained using the
same axial 2D patches as the DeepUNET2D.

DeepMedic16 was trained with 3D-FLAIR images with the
code and default training settings available at https://github.com/
deepmedic/deepmedic. We also compared our performance with
the ensemble technique10 that achieved the highest Dice score,
modified Hausdorff distance (95th percentile; HD95), and lesion-
recall values in the recent WMH segmentation challenge.12 This
winning submission (UNET2D-WS-E), an averaging ensemble of
three 2D UNETs, was trained using 2D-FLAIR images with the
author’s provided code and training settings (https://github.
com/hongweilibran/wmh_ibbmTum). In contrast to the pro-
posed DeepUNET3D, these reference architectures did not use
dropout.

Additionally, we also used the lesion-prediction algorithm
from the Lesion Segmentation Toolbox23 (FMRIB Automated
Segmentation Tool; https://www.applied-statistics.de/lst.html).
Although some of the techniques compared here10,16,23 can also
use T1-weighted images, we made use of only FLAIR images
to train and/or evaluate these techniques for a comparable
assessment.

Evaluation Metrics
The WMH detection performance was evaluated using the met-
rics defined in the Online Supplemental Data: Dice score, preci-
sion, recall, F1, HD95, and absolute volume difference (VD). The
precision, recall, and F1 metrics were evaluated at the pixel-level
(Precision-P, Recall-P, F1-P) as well as lesion-level (Precision-L,
Recall-L, F1-L). A connected component analysis was used to
identify individual lesions in the predicted segmentations. We
also generated precision-recall receiver operating curves to

compare the areas under the curve (AUCs) for this heavily imbal-
anced class-detection problem.

Statistical Analysis
Two-sided paired t tests were used to determine whether
StackGen-Net performance significantly differed from other
state-of-the-art comparisons. When applicable, P values were
Bonferroni-corrected for multiple comparisons. The total lesion
volume was calculated on the ground truth annotations as well as
WMH predictions from StackGen-Net. A Bland-Altman analysis
was performed to assess the agreement in the number of detected
lesions and lesion volume between ground truth and StackGen-
Net predictions. The reproducibility coefficient, coefficient of
variation, and correlation statistics were computed. A 2-sided
paired t test was used to assess whether the WMH volumes signif-
icantly differed between the ground truth and StackGen-Net
predictions.

Pair-wise Dice scores were calculated on the interobserver
variability set from test cohorts 1 and 2 between human observers
and StackGen-Net predictions. Repeated measures ANOVA was
used to test whether the pair-wise Dice scores were significantly
different between StackGen-Net and human observers. The value
of a was set to .05 for all statistical comparisons.

RESULTS
The training of each DeepUNET3D CNN in StackGen-Net took
approximately 40hours, whereas the Meta CNN took approxi-
mately 1 hour. The end-to-end prediction time for a preprocessed
3D-FLAIR test image (240 � 270 � 176) was approximately
45 seconds on a GPU. The training and validation loss curves for
a subset of DeepUNET3D architectures are presented in the
Online Supplemental Data.

Figure 2 shows WMH predictions from StackGen-Net for rep-
resentative multiplanar 3D-FLAIR images from a test subject,
along with reference manual annotations. We see that StackGen-
Net is able to identify smaller lesions, even when individual or-
thogonal CNNs miss them (Fig 2B and Online Supplemental
Data). A comparison of StackGen-Net segmentation performance
with variants of the DeepUNET3D CNN on test cohort 1 is pre-
sented in Table 1 and the Online Supplemental Data. StackGen-
Net achieved a higher Dice score (0.76) compared with the
individual orthogonal CNNs in the stacked generalization en-
semble or their ensemble using averaging and majority voting
(range, 0.72–0.75) (Table 1). StackGen-Net also yielded an
absolute VD (12.36%) lower than the other CNNs. We also
observed differences among performances of the orthogonal
CNNs. On average, DeepUNET3D-Ax achieved the highest
Dice score (0.74), whereas DeepUNET3D-Sagittal achieved the
lowest absolute VD (16.9%), though these differences were not
significant.

The introduction of convolutional blocks (DeepUNET2D-Ax
versus UNET2D) significantly improved Dice scores (P ¼ .002),
F1-L (P , .001), and absolute VD (P ¼ .02). Additional spatial
information in the form of 2.5D patches (DeepUNET3D-Ax
versus DeepUNET2D-Ax) significantly improved the per-
formance in Dice scores, F1-L (P , .005), and absolute VD
(P ¼ .03). WMH segmentation performance of DeepUNET3D-
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Ax with changes to the in-plane and through-plane spatial con-
text of the training patch is shown in the Online Supplemental
Data.

The predictions from StackGen-Net on test cohorts 1 and 2 are
compared with state-of-the-art WMH segmentation techniques
in Table 2 and the Online Supplemental Data. As expected, all
deep learning CNNs outperformed the Lesion Segmentation
Toolbox in all evaluation metrics. On average, StackGen-Net
achieved significantly higher Dice scores (0.76 versus 0.33–0.66)
(P , .001), F1-L (0.74 versus 0.40–0.65) (P , .001), and AUC

(0.84 versus 0.53 - 0.62) (P , .001) in the test cohorts (n ¼ 29).
The absolute VD was significantly lower (13.3% versus
32.7%–64.1%) than UNET2D-WS-E (P ¼ .03), DeepMedic
(P , .001), and UNET2D (P , .001). The UNET2D-WS-E
architecture had the next best performance across most of
the evaluation metrics. The boxplots (Fig 3) show the median
scores and interquartile ranges for these techniques over
the test cohorts (n ¼ 29). The correlation and Bland-Altman
plots to assess agreement between ground truth and
StackGen-Net WMH predictions in terms of the total

Table 1: Comparisona of StackGen-Net with variants of DeepUNET3D architecture

DeepUNET3D Orthogonal
StackGen-NetAxial Sagittal Coronal Axial (E-A) (E-A) (E-MV)

Dice (F1-P) 0.74
[SD, 0.06]

0.73
[SD, 0.08]

0.72
[SD, 0.02]

0.73
[SD, 0.07]

0.75
[SD, 0.08]

0.75
[SD, 0.08]

0.76
[SD, 0.07]

Precision-P 0.84
[SD, 0.08]

0.81
[SD, 0.07]

0.83
[SD, 0.08]

0.84
[SD, 0.08]

0.87
[SD, 0.06]

0.87
[SD, 0.06]

0.73
[SD, 0.11]

Recall-P 0.66
[SD, 0.08]

0.67
[SD, 0.10]

0.64
[SD, 0.12]

0.78
[SD, 0.09]

0.66
[SD, 0.10]

0.67
[SD, 0.10]

0.79
[SD, 0.1]

Precision-L 0.81
[SD, 0.10]

0.79
[SD, 0.09]

0.85
[SD, 0.11]

0.84
[SD, 0.09]

0.88
[SD, 0.09]

0.87
[SD, 0.09]

0.75
[SD, 0.11]

Recall-L 0.80
[SD, 0.15]

0.80
[SD, 0.10]

0.78
[SD, 0.11]

0.77
[SD, 0.14]

0.80
[SD, 0.13]

0.81
[SD, 0.13]

0.87
[SD, 0.08]

F1-L 0.80
[SD, 0.11]

0.79
[SD, 0.07]

0.80
[SD, 0.08]

0.80
[SD, 0.09]

0.83
[SD, 0.08]

0.83
[SD, 0.08]

0.80
[SD, 0.09]

jVDj(%) 21.2
[SD, 10.5]

16.9
[SD, 10.8]

23.5
[SD, 13.0]

22.7
[SD, 11.2]

24.3
[SD, 11.3]

22.3
[SD, 10.9]

12.3
[SD, 12.7]

Note:—jVDj indicates absolute volume difference; P, pixel; L, lesion.
aMean [SD] on test cohort 1.

FIG 2. Qualitative evaluation of WMH detection performance by StackGen-Net. Representative axial, coronal, and sagittal slices from a test
subject are shown in the left panel. Manual annotations and predictions from StackGen-Net are overlaid in red. A, The insets from coronal
images are zoomed in for better comparison of the prediction with the ground truth. Compared with manual annotation, StackGen-Net slightly
overestimates the lesion contour. B, A comparison of WMH predictions from the orthogonal CNNs (axial, sagittal, and coronal) is shown. The
yellow arrows show WMHs that were missed by a majority of the CNNs in the ensemble. These lesions would have been missed by a simple
averaging or majority voting of the orthogonal CNN predictions but are identified correctly by StackGen-Net. Sag indicates sagittal; Cor,
coronal.
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number of lesions (Online Supplemental Data) and their vol-
umes (Fig 4) are also shown. The predicted WMH lesion vol-
umes from StackGen-Net were highly correlated (r ¼ 0.99)
and were not significantly different from WMH volumes in
ground truth (P ¼ .15).

Table 3 compares human interobserver variability on the 2
test cohorts. The average intraobserver variability in Dice scores
in observer 1 annotations on test cohort 1 was 0.70 (median ¼
0.71). The average pair-wise agreement in Dice scores between
humans, calculated as an average of observer 1 versus observer 2,
was 0.67 (median ¼ 0.73) and 0.66 (median ¼ 0.72) for test
cohorts 1 and 2, respectively. The average agreement between
human observers and StackGen-Net was 0.70 (median ¼ 0.74)
and 0.70 (median ¼ 0.73) in these cohorts. Although the average
pair-wise Dice scores for StackGen-Net were higher compared
with human observers, we did not find this difference to be sig-
nificant (P¼ .22).

DISCUSSION
Data and Architecture
In this work, we present the use of a stacked generalization of
CNNs trained on 2.5D patches from orthogonal 3D-FLAIR ori-
entations to improveWMH segmentation performance. The sub-
stantial improvement in performance as we move from UNET2D
to DeepUNET2D illustrates the benefits of the convolutional
blocks in the proposed architecture. The impact of additional
spatial context provided by 2.5D training patches is evident in the
superior performance of DeepUNET3D over its 2D counterpart.

The use of 2.5D training patches can be beneficial when work-
ing with a limited collection of annotated data or computational
burden in optimally training a 3D network with 3D training
patches.24 Furthermore, in addition to random initialization in an
ensemble framework, training each orthogonal CNN with 2.5D
patches from a different orientation can provide training data di-
versity, a feature crucial to any ensemble-based training model.

The choice of CNN architecture, weights initialization, and
hyperparameters has been shown to affect the task-specific per-
formance of a CNN.10,17 An ensemble of CNNs has been shown
to average away the variances in the solution and model- and
configuration-specific behaviors.17 We also observed a similar
trend (Table 1), in which the ensemble combination of CNNs per-
formed better compared with individual CNNs in the ensemble.

The stacked generalization of orthogonal CNNs, with a higher
Dice score and a lower absolute VD, outperformed individual
DeepUNET3D CNNs or their ensemble combination using aver-
aging or majority voting. An averaging ensemble assigns equal
weights to WMH posteriors from individual CNNs, whereas ma-
jority voting prefers a majority consensus. Stacked generalization,
on the other hand, learns a new functional mapping from indi-
vidual CNN predictions in the ensemble to the target labels. This
allows the Meta CNN to deduce the bias rate of individual
DeepUNET3D CNNs in the ensemble and compensate for their
flaws. In our experiments, we observed a difference in segmenta-
tion performance between the orthogonal CNNs, possibly due to
learning different lesion characteristics that may depend on ori-
entation. A stacked generalization framework is well-suited to
learn and combine performance gains from the orthogonal
CNNs. StackGen-Net is able to accurately detect WMHs, even
when a majority in the ensemble predict a false-negative (Fig 2).

Human Observer Variability
The inter- and intraobserver variability in Dice scores
between 2 experienced neuroradiologists reinforces the sub-
jective nature of manual WMH annotations, even in the pres-
ence of pre-established annotation guidelines. The use of a
trained CNN, with its deterministic framework, already elimi-
nates intraobserver variability in predictions for a given FLAIR
volume. Because we did not find the improvements in Dice
scores between StackGen-Net and observers to be significant,
we can say that StackGen-Net performance is comparable
with human interobserver variability.

Table 2: Comparison of StackGen-Net with other WMH detection techniques

Test Cohort 1 Test Cohort 2
UNET2D DeepMedic UNET2D WS-E StackGen-Net UNET2D DeepMedic UNET2D WS-E StackGen-Net

Dice (F1-P) 0.43
[SD, 0.17]

0.62
[SD, 0.09]

0.67
[SD, 0.09]

0.76
[SD, 0.07]

0.27
[SD, 0.20]

0.58
[SD, 0.15]

0.66
[SD, 0.17]

0.76
[SD, 0.09]

Precision-P 0.72
[SD, 0.19]

0.63
[SD, 0.13]

0.72
[SD, 0.15]

0.73
[SD, 0.11]

0.73
[SD, 0.32]

0.66
[SD, 0.22]

0.69
[SD, 0.23]

0.77
[SD, 0.11]

Recall-P 0.32
[SD, 0.19]

0.63
[SD, 0.18]

0.64
[SD, 0.07]

0.79
[SD, 0.1]

0.18
[SD, 0.16]

0.53
[SD, 0.13]

0.67
[SD, 0.12]

0.75
[SD, 0.09]

Precision-L 0.60
[SD, 0.20]

0.47
[SD, 0.23]

0.69
[SD, 0.18]

0.75
[SD, 0.11]

0.72
[SD, 0.24]

0.43
[SD, 0.23]

0.60
[SD, 0.23]

0.84
[SD, 0.14]

Recall-L 0.37
[SD, 0.09]

0.86
[SD, 0.09]

0.79
[SD, 0.15]

0.87
[SD, 0.08]

0.26
[SD, 0.14]

0.71
[SD, 0.10]

0.74
[SD, 0.13]

0.67
[SD, 0.13]

F1-L 0.44
[SD, 0.10]

0.54
[SD, 0.11]

0.71
[SD, 0.09]

0.80
[SD, 0.09]

0.37
[SD, 0.16]

0.50
[SD, 0.20]

0.63
[SD, 0.15]

0.73
[SD, 0.11]

jVDj(%) 54.4
[SD, 22.1]

26.9
[SD, 20.0]

17.6
[SD, 11.2]

12.3
[SD, 12.7]

77.4
[SD, 16.5]

30.6
[SD, 18.6]

37.6
[SD, 51.5]

13.7
[SD, 9.7]

HD95 19.5
[SD, 8.6]

15.9
[SD, 16.1]

10.8
[SD, 6.7]

5.27
[SD, 3.15]

30.6
[SD, 20.9]

21.8
[SD, 22.9]

19.5
[SD, 18.8]

17.1
[SD, 21.0]

AUC 0.53
[SD, 0.21]

0.66
[SD, 0.12]

0.61
[SD, 0.11]

0.84
[SD, 0.07]

0.54
[SD, 0.28]

0.60
[SD, 0.20]

0.60
[SD, 0.20]

0.84
[SD, 0.10]

Note:—HD95 indicatesmodified Hausdorff distance (mm); P, pixel; L, lesion; jVDj = absolute volume difference.
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Comparison with Literature and
Limitations
A wide range of Dice scores (0.51–0.80)
have been reported in the literature
for CNN-based WMH segmentation
using 2D-FLAIR images.8-10,25,26 In
comparison with some state-of-the-
art techniques evaluated on the 2 test
cohorts in this study, we observed
higher average Dice scores of 0.76 and
0.75, respectively. Although the Dice
scores reported in this work are
slightly lower than those in some of
these earlier studies, the human inter-
observer variability baseline (0.67
compared with 0.77–0.79 reported in
the literature) is also low in our study
cohort.

The extent of WMH burden has
been reported to affect evaluation met-
rics such as the Dice score.8 The Online
Supplemental Data show the histogram
of WMH volumes in our study cohort
(n ¼ 50) and scatterplots of total WMH
volumes and average WMH volumes
versus Dice scores on the test cohorts
(n ¼ 29). We observed that most sub-
jects in our study cohort had low WMH
volumes (8.04 [SD, 11.3]mL), which are
associated with lower Dice scores. For a
comparable assessment, we trained and
evaluated some of these state-of-the-art
techniques on our 3D-FLAIR dataset.

The orthogonal CNNs in StackGen-
Net exploit the 3D nature of FLAIR ac-
quisition and combine WMH informa-
tion from the 3 orthogonal planes for
segmentation. The use of 3D convolu-
tions may result in suboptimal per-
formance when training on anisotropic
2D-FLAIR images with thick slices.9,11

Interpolation to 3D space may affect
the performance of 3D CNNs as a
result of the blurring introduced
along the slice direction. A similar ob-
servation was also made in Kuijf et
al12 regarding the results of the WMH
segmentation challenge on 2D-
FLAIR, in which most methods that
used 3D convolutions appeared to
perform poorly, ranking near the
bottom.

Although 3D-FLAIR images are
being widely used in research proto-
cols such as ADNI, their clinical usage
is not widespread. The clinical applic-
ability of the proposed technique

FIG 3. Boxplot comparison of Dice scores, lesion-based F1 (F1-L), volume difference (VD),
and area under precision-recall curve (AUC) scores on the test set. We found a significant
improvement in Dice scores, AUC, and F1-L in StackGen-Net compared with other WMH
segmentation techniques compared here. The asterisk denotes P , .001 (2-sided paired t
test, n ¼ 29).

FIG 4. Correlation between WMH volumes (milliliters) in ground truth annotations and
StackGen-Net predictions. A, We observed a strong correlation between the predictions
and ground truth. B, Bland-Altman plot shows a good agreement in WMH volumes
between the ground truth annotations and StackGen-Net predictions. We found no signif-
icant differences between the 2 volumes (P ¼ .15, n ¼ 29). The coefficient of variation (CV)
and the repeatability coefficient (RPC) are also shown.
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needs to be further investigated on clinical 2D-FLAIR images
to understand the impact of blurring on the detection of
smaller lesions. Additionally, the CNNs in this study were all
trained/evaluated on cohorts that excluded other pathologies
that may produce hyperintensities on FLAIR images; the
applicability of these CNNs requires further investigation on
such images.

Although our study cohort is small compared with other
published deep learning–based studies, the use of a 2.5D
patch-based training framework, combined with data augmen-
tation, has been useful to avoid the problem of limited anno-
tated training data and overfitting. StackGen-Net, trained on
images from a single scanner type, showed consistently
improved performance on an independent cohort, demon-
strating generalizability on images spanning multiple institu-
tions and scanner manufacturers.

Clinical Outcomes
Results in the test cohorts show that StackGen-Net detects
WMHs on 3D-FLAIR images with high Dice scores and
lesion-wise F1. Fast and efficient 3D CNN architectures for
WMH segmentation, such as StackGen-Net, can be used for
the automatic, quantitative, and fast evaluation of WMH
extent. With the demonstrated generalizability on a subset of
ADNI data, the multiplanar StackGen-Net framework can be
easily applied to larger 3D-FLAIR based longitudinal data
repositories, including ADNI, to study the relationship
between WMH burden and cognition. In conjunction with
clinical visual rating scores, accurate WMH volume estima-
tion can provide a better understanding of the relationship
between lesion burden and clinical outcomes.

CONCLUSIONS
In this work, a stacked generalization of 3D orthogonal
CNNs (StackGen-Net) was proposed to detect WMHs using
multiplanar information from 3D-FLAIR images. We dem-
onstrated that a stacked generalization ensemble outperforms
traditional ensemble combinations as well as some state-of-
the-art WMH detection frameworks. We also showed that we
can reliably detect and quantify WMH in a time-efficient
manner with performance comparable to human interob-
server variability.

Disclosures: Gloria Guzman Perez-Carrillo—UNRELATED: Patents (Planned,
Pending or Issued): Quantitative Differentiation of Tumor Heterogeneity using
Diffusion MR Imaging Data, Patent No. 016652-PRO1; Stock/Stock Options:
Vanguard Mutual Funds. Mahesh Bharath Keerthivasan—OTHER RELATIONSHIPS: I
am currently a paid employee of Siemens Healthineers.

REFERENCES
1. Fazekas F, Kleinert R, Offenbacher H, et

al. Pathologic correlates of incidental
MRI white matter signal hyperinten-
sities. Neurology 1993;43:1683–83
CrossRef Medline

2. Brickman AM, Meier IB, Korgaonkar
MS, et al. Testing the white matter ret-
rogenesis hypothesis of cognitive
aging. Neurobiol Aging 2012;33:1699–

1715 CrossRef Medline
3. Chutinet A, Rost NS.White matter disease as a biomarker for long-

term cerebrovascular disease and dementia. Curr Treat Options
Cardiovasc Med 2014;16:392 CrossRef Medline

4. Carmichael O, Schwarz C, Drucker D, et al. Longitudinal changes in
white matter disease and cognition in the first year of the Alzheimer
Disease Neuroimaging Initiative. Arch Neurol 2010;67:1370– 78
CrossRef Medline

5. Bendfeldt K, Blumhagen JO, Egger H, et al. Spatiotemporal distribu-
tion pattern of white matter lesion volumes and their association
with regional grey matter volume reductions in relapsing-remit-
ting multiple sclerosis. Hum Brain Mapp 2010;31:1542–55 CrossRef
Medline

6. Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities
at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J
Roentgenol 1987;149:351–56 CrossRef Medline

7. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in
medical image analysis. Med Image Anal 2017;42:60–88 CrossRef
Medline

8. Rachmadi MF, Valdés-Hernández MD, Agan ML, et al; Alzheimer’s
Disease Neuroimaging Initiative. Segmentation of white matter
hyperintensities using convolutional neural networks with global
spatial information in routine clinical brain MRI with none or
mild vascular pathology. Comput Med Imaging Graph 2018;66:28–
43 CrossRef Medline

9. Guerrero R, Qin C, Oktay O, et al. White matter hyperintensity
and stroke lesion segmentation and differentiation using con-
volutional neural networks. Neuroimage Clin 2018;17:918–34
CrossRef Medline

10. Li H, Jiang G, Zhang J, et al. Fully convolutional network ensembles
for white matter hyperintensities segmentation in MR images.
Neuroimage 2018;183:650–65 CrossRef Medline

11. Ghafoorian M, Karssemeijer N, Heskes T, et al. Location sensitive
deep convolutional neural networks for segmentation of white
matter hyperintensities. Sci Rep 2017;7:1–12 CrossRef Medline

12. Kuijf HJ, Casamitjana A, Collins DL, et al. Standardized assess-
ment of automatic segmentation of white matter hyperintensities
and results of the WMH segmentation challenge. IEEE Trans Med
Imaging 2019;38:2556–68 CrossRef Medline

13. Bink A, Schmitt M, Gaa J, et al.Detection of lesions in multiple scle-
rosis by 2D FLAIR and single-slab 3D FLAIR sequences at 3.0 T:
initial results. Eur Radiol 2006;16:1104–10 CrossRef Medline

14. Valverde S, Cabezas M, Roura E, et al. Improving automated multi-
ple sclerosis lesion segmentation with a cascaded 3D convolutional
neural network approach. Neuroimage 2017;155:159–68 CrossRef
Medline

15. Kushibar K, Valverde S, González-Villà S, et al. Automated sub-
cortical brain structure segmentation combining spatial and
deep convolutional features. Med Image Anal 2018;48:177–86
CrossRef Medline

16. Kamnitsas K, Ledig C, Newcombe VFJ, et al. Efficient multi-scale
3D CNN with fully connected CRF for accurate brain lesion seg-
mentation.Med Image Anal 2017;36:61–78 CrossRef Medline

17. Kamnitsas K, Bai W, Ferrante E, et al. Ensembles of multiple
models and architectures for robust brain tumour segmenta-
tion. In: International MICCAI Brainlesion Workshop: Springer;
2017: 450–62 Accessed September 14, 2017

Table 3: Interobserver variability in Dice scoresa

Test Cohort 1 Test Cohort 2

Observer 2 StackGen-Net Observer 2 StackGen-Net
Observer 1 0.68 (0.72) 0.76 (0.74) 0.66 (0.72) 0.74 (0.75)
Observer 2 0.65 (0.66) 0.65 (0.72)

aMean (median) pair-wise Dice scores.

8 Umapathy � 2021 www.ajnr.org

http://dx.doi.org/10.1212/WNL.43.9.1683
https://www.ncbi.nlm.nih.gov/pubmed/8414012
http://dx.doi.org/10.1016/j.neurobiolaging.2011.06.001
https://www.ncbi.nlm.nih.gov/pubmed/21783280
http://dx.doi.org/10.1007/s11936-013-0292-z
https://www.ncbi.nlm.nih.gov/pubmed/24496967
http://dx.doi.org/10.1001/archneurol.2010.284
https://www.ncbi.nlm.nih.gov/pubmed/21060014
http://dx.doi.org/10.1002/hbm.20951
https://www.ncbi.nlm.nih.gov/pubmed/20108225
http://dx.doi.org/10.2214/ajr.149.2.351
https://www.ncbi.nlm.nih.gov/pubmed/3496763
http://dx.doi.org/10.1016/j.media.2017.07.005
https://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1016/j.compmedimag.2018.02.002
https://www.ncbi.nlm.nih.gov/pubmed/29523002
http://dx.doi.org/10.1016/j.nicl.2017.12.022
https://www.ncbi.nlm.nih.gov/pubmed/29527496
http://dx.doi.org/10.1016/j.neuroimage.2018.07.005
https://www.ncbi.nlm.nih.gov/pubmed/30125711
http://dx.doi.org/10.1038/s41598-017-05300-5
https://www.ncbi.nlm.nih.gov/pubmed/28698556
http://dx.doi.org/10.1109/TMI.2019.2905770
https://www.ncbi.nlm.nih.gov/pubmed/30908194
http://dx.doi.org/10.1007/s00330-005-0107-z
https://www.ncbi.nlm.nih.gov/pubmed/16425026
http://dx.doi.org/10.1016/j.neuroimage.2017.04.034
https://www.ncbi.nlm.nih.gov/pubmed/28435096
http://dx.doi.org/10.1016/j.media.2018.06.006
https://www.ncbi.nlm.nih.gov/pubmed/29935442
http://dx.doi.org/10.1016/j.media.2016.10.004
https://www.ncbi.nlm.nih.gov/pubmed/27865153


18. Wolpert DH. Stacked generalization. Neural Networks 1992;5:241–
59 CrossRef

19. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks
for biomedical image segmentation.May 2015. http://arxiv.org/abs/
1505.04597. Accessed July 19, 2019

20. Smith SM. Fast robust automated brain extraction. Hum Brain
Mapp 2002;17:143–55 CrossRef Medline

21. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias
correction. IEEE Trans Med Imaging 2010;29:1310–20 CrossRef
Medline

22. Abadi M, Agarwal A, Barham P, et al. Tensorflow: large-scale
machine learning on heterogeneous distributed systems. February
28, 2016. https://arxiv.org/abs/1603.04467v2. Accessed April 25, 2020

23. Schmidt P, Gaser C, Arsic M, et al. An automated tool for detection
of FLAIR-hyperintense white-matter lesions in multiple sclerosis.
Neuroimage 2012;59:3774–83 CrossRef Medline

24. Xing Y, Wang J, Chen X, et al. 2.5D convolution for RGB-D semantic
segmentation. In: Proceedings of the International Conference on Image
Processing (ICIP), Taipei, Tiwan. September 22–25, 2019 CrossRef

25. Ghafoorian M, Karssemeijer N, Heskes T, et al. Deep multi-scale
location-aware 3D convolutional neural networks for automated
detection of lacunes of presumed vascular origin. Neuroimage Clin
2017;14:391–99 CrossRef Medline

26. Duong MT, Rudie JD, Wang J, et al. Convolutional neural network
for automated flair lesion segmentation on clinical brain MR imag-
ing. AJNR Am J Neuroradiol 2019;40:1282–90 CrossRef Medline

AJNR Am J Neuroradiol �:� � 2021 www.ajnr.org 9

http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://dx.doi.org/10.1002/hbm.10062
https://www.ncbi.nlm.nih.gov/pubmed/12391568
http://dx.doi.org/10.1109/TMI.2010.2046908
https://www.ncbi.nlm.nih.gov/pubmed/20378467
http://dx.doi.org/10.1016/j.neuroimage.2011.11.032
https://www.ncbi.nlm.nih.gov/pubmed/22119648
http://dx.doi.org/10.1109/ICIP.2019.8803757
http://dx.doi.org/10.1016/j.nicl.2017.01.033
https://www.ncbi.nlm.nih.gov/pubmed/28271039
http://dx.doi.org/10.3174/ajnr.A6138
https://www.ncbi.nlm.nih.gov/pubmed/31345943

	A Stacked Generalization of 3D Orthogonal Deep Learning Convolutional Neural Networks for Improved Detection of White Matter Hyperintensities in 3D FLAIR Images
	MATERIALS AND METHODS
	STACKGEN-NET CNN ARCHITECTURE
	STUDY POPULATION AND IMAGE ACQUISITION
	WMH ANNOTATIONS
	TRAINING DATA
	EXPERIMENTS
	COMPARISONS WITH STATE-OF-THE-ART TECHNIQUES
	EVALUATION METRICS
	STATISTICAL ANALYSIS
	RESULTS
	DISCUSSION
	DATA AND ARCHITECTURE
	HUMAN OBSERVER VARIABILITY
	COMPARISON WITH LITERATURE AND LIMITATIONS
	CLINICAL OUTCOMES
	CONCLUSIONS
	REFERENCES


