Skip to main content
Advertisement

Main menu

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Other Publications
    • ajnr

User menu

  • Subscribe
  • Alerts
  • Log in

Search

  • Advanced search
American Journal of Neuroradiology
American Journal of Neuroradiology

American Journal of Neuroradiology

  • Subscribe
  • Alerts
  • Log in

Advanced Search

  • Home
  • Content
    • Current Issue
    • Publication Preview--Ahead of Print
    • Past Issue Archive
    • Case of the Week Archive
    • Classic Case Archive
    • Case of the Month Archive
  • For Authors
  • About Us
    • About AJNR
    • Editors
    • American Society of Neuroradiology
  • Submit a Manuscript
  • Podcasts
    • Subscribe on iTunes
    • Subscribe on Stitcher
  • More
    • Subscribers
    • Permissions
    • Advertisers
    • Alerts
    • Feedback
  • Follow AJNR on Twitter
  • Visit AJNR on Facebook
  • Follow AJNR on Instagram
  • Join AJNR on LinkedIn
  • RSS Feeds
Research ArticleADULT BRAIN
Open Access

Inversion Recovery Ultrashort TE MR Imaging of Myelin is Significantly Correlated with Disability in Patients with Multiple Sclerosis

H. Jang, Y.-J. Ma, E.Y. Chang, S. Fazeli, R.R. Lee, A.F. Lombardi, G.M. Bydder, J. Corey-Bloom and J. Du
American Journal of Neuroradiology February 2021, DOI: https://doi.org/10.3174/ajnr.A7006
H. Jang
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for H. Jang
Y.-J. Ma
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Y.-J. Ma
E.Y. Chang
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
cRadiology Service (E.Y.C., R.R.L.), VA San Diego Healthcare System, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for E.Y. Chang
S. Fazeli
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for S. Fazeli
R.R. Lee
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
cRadiology Service (E.Y.C., R.R.L.), VA San Diego Healthcare System, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for R.R. Lee
A.F. Lombardi
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for A.F. Lombardi
G.M. Bydder
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for G.M. Bydder
J. Corey-Bloom
bNeurosciences (J.C.-B.), University of California San Diego, San Diego, California
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Corey-Bloom
J. Du
aFrom the Department of Radiology (H.J., Y.-J.M., E.Y.C., S.F., R.R.L., A.F.L., G.M.B., J.D.)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for J. Du
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. van der Knaap MS,
    2. Valk J
    . Magnetic Resonance of Myelination and Myelin Disorders. Springer-Verlag; 2005: 1–19
  2. 2.↵
    1. Nelson F,
    2. Poonawalla A,
    3. Hou P, et al
    . 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult Scler 2008;14:1214–19 doi:10.1177/1352458508094644 pmid:8952832
    CrossRefPubMedWeb of Science
  3. 3.↵
    1. Thompson AJ,
    2. Miller DH,
    3. MacManus DG, et al
    . Patterns of disease activity in multiple sclerosis. BMJ 1990;301:44–45 doi:10.1136/bmj.301.6742.44-a pmid:2383714
    FREE Full Text
  4. 4.↵
    1. Grossman RI,
    2. Braffman BH,
    3. Brorson JR, et al
    . Multiple sclerosis: serial study of gadolinium-enhanced MR imaging. Radiology 1988;169:117–22 doi:10.1148/radiology.169.1.3420246 pmid:3420246
    CrossRefPubMedWeb of Science
  5. 5.↵
    1. Chen JT,
    2. Collins DL,
    3. Atkins HL, et al
    ; Canadian MS/BMT Study Group. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 2008;63:254–62 doi:10.1002/ana.21302 pmid:18257039
    CrossRefPubMedWeb of Science
  6. 6.↵
    1. Whittall KP,
    2. MacKay AL,
    3. Graeb DA, et al
    . In vivo measurement of T2 distributions and water contents in normal human brain. Magn Reson Med 1997;37:34–43 doi:10.1002/mrm.1910370107 pmid:8978630
    CrossRefPubMedWeb of Science
  7. 7.↵
    1. Hwang D,
    2. Kim DH,
    3. Du YP
    . In vivo multi-slice mapping of myelin water content using T2* decay. Neuroimage 2010;52:198–204 doi:10.1016/j.neuroimage.2010.04.023 pmid:20398770
    CrossRefPubMed
  8. 8.↵
    1. Oh SJ,
    2. Bilello M,
    3. Schindler M, et al
    . Direct visualization of short transverse relaxation time component (ViSTa). Neuroimage 2013;83:485–92 doi:10.1016/j.neuroimage.2013.06.047 pmid:23796545
    CrossRefPubMed
  9. 9.↵
    1. Ouellette R,
    2. Mangeat G,
    3. Polyak I, et al
    . Validation of rapid magnetic resonance myelin imaging in multiple sclerosis. Ann Neurol 2020;87:710–24 doi:10.1002/ana.25705 pmid:32057118
    CrossRefPubMed
  10. 10.↵
    1. Miki Y,
    2. Grossman RI,
    3. Udupa JK, et al
    . Relapsing-remitting multiple sclerosis: longitudinal analysis of MR images–lack of correlation between changes in T2 lesion volume and clinical findings. Radiology 1999;213:395–99 doi:10.1148/radiology.213.2.r99oc01395 pmid:10551218
    CrossRefPubMedWeb of Science
  11. 11.↵
    1. Li DK,
    2. Held U,
    3. Petkau J, et al
    ; Sylvia Lawry Centre for MS Research. MRI T2 lesion burden in multiple sclerosis: a plateauing relationship with clinical disability. Neurology 2006;66:1384–89 doi:10.1212/01.wnl.0000210506.00078.5c pmid:16682671
    CrossRefPubMed
  12. 12.↵
    1. Charil A,
    2. Zijdenbos AP,
    3. Taylor J, et al
    . Statistical mapping analysis of lesion location and neurological disability in multiple sclerosis: application to 452 patient data sets. Neuroimage 2003;19:532–44 doi:10.1016/S1053-8119(03)00117-4 pmid:12880785
    CrossRefPubMedWeb of Science
  13. 13.↵
    1. Poonawalla AH,
    2. Datta S,
    3. Juneja V, et al
    . Composite MRI scores improve correlation with EDSS in multiple sclerosis. Mult Scler 2010;16:1117–25 doi:10.1177/1352458510374892 pmid:20813778
    CrossRefPubMed
  14. 14.↵
    1. Kappos L,
    2. Moeri D,
    3. Radue EW, et al
    . Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet 1999;353:964–69 doi:10.1016/S0140-6736(98)03053-0 pmid:10459905
    CrossRefPubMedWeb of Science
  15. 15.↵
    1. Rovaris M,
    2. Judica E,
    3. Sastre-Garriga J, et al
    . Large-scale, multicenter, quantitative MRI study of brain and cord damage in primary progressive multiple sclerosis. Mult Scler 2008;14:455–64 doi:10.1177/1352458507085129 pmid:18208869
    CrossRefPubMedWeb of Science
  16. 16.↵
    1. Waldman A,
    2. Rees JH,
    3. Brock CS, et al
    . MRI of the brain with ultra-short echo time pulse sequences. Neuroradiology 2003;45:887–92 doi:10.1007/s00234-003-1076-z pmid:14508620
    CrossRefPubMedWeb of Science
  17. 17.↵
    1. Horch RA,
    2. Gore JC,
    3. Does MD
    . Origins of the ultrashort T2 1H NMR signals in myelinated nerve: a direct measure of myelin content? Magn Reson Med 2011;66:24–31 doi:10.1002/mrm.22980 pmid:21574183
    CrossRefPubMed
  18. 18.↵
    1. Wilhelm MJ,
    2. Ong HH,
    3. Wehrli SL, et al
    . Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proc Natl Acad Sci U S A 2012;109:9605–10 doi:10.1073/pnas.1115107109 pmid:22628562
    Abstract/FREE Full Text
  19. 19.↵
    1. Du J,
    2. Ma G,
    3. Li S, et al
    . Ultrashort TE echo time (UTE) magnetic resonance imaging of the short T2 components in white matter of the brain using a clinical 3T scanner. Neuroimage 2014;87:32–41 doi:10.1016/j.neuroimage.2013.10.053 pmid:24188809
    CrossRefPubMed
  20. 20.↵
    1. Du J,
    2. Sheth V,
    3. He Q, et al
    . Measurement of T1 of the ultrashort T2* components in white matter of the brain at 3T. PLoS One 2014;9:e103296 doi:10.1371/journal.pone.0103296 pmid:25093859
    CrossRefPubMed
  21. 21.↵
    1. Sheth V,
    2. Shao H,
    3. Chen J, et al
    . Magnetic resonance imaging of myelin using ultrashort echo time (UTE) pulse sequence: phantom, specimen, volunteers and multiple sclerosis patient studies. Neuroimage 2016;136:37–44 doi:10.1016/j.neuroimage.2016.05.012 pmid:27155128
    CrossRefPubMed
  22. 22.↵
    1. Larson PE,
    2. Conolly SM,
    3. Pauly JM, et al
    . Using adiabatic inversion pulses for long-T2 suppression in ultrashort echo time (UTE) imaging. Magn Reson Med 2007;58:952–61 doi:10.1002/mrm.21341 pmid:17969119
    CrossRefPubMed
  23. 23.↵
    1. Tustison NJ,
    2. Cook PA,
    3. Klein A, et al
    . Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage 2014;99:166–79 doi:10.1016/j.neuroimage.2014.05.044 pmid:24879923
    CrossRefPubMedWeb of Science
  24. 24.↵
    1. Fonov VS,
    2. Evans AC,
    3. Botteron K, et al
    ; Brain Development Cooperative Group. Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 2011;54:313–27 doi:10.1016/j.neuroimage.2010.07.033 pmid:20656036
    CrossRefPubMedWeb of Science
  25. 25.↵
    1. Avants BB,
    2. Tustison NJ,
    3. Wu J, et al
    . An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 2011;9:381–400 doi:10.1007/s12021-011-9109-y pmid:21373993
    CrossRefPubMedWeb of Science
  26. 26.↵
    1. Fukunaga M,
    2. Li TQ,
    3. Van Gelderen P, et al
    . Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci U S A 2010;107:3834–39 doi:10.1073/pnas.0911177107 pmid:20133720
    Abstract/FREE Full Text
  27. 27.↵
    1. Stüber C,
    2. Morawski M,
    3. Schäfer A, et al
    . Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 2014;93:95–106 doi:10.1016/j.neuroimage.2014.02.026 pmid:24607447
    CrossRefPubMed
  28. 28.↵
    1. Acosta-Cabronero J,
    2. Betts MJ,
    3. Cardenas-Blanco A, et al
    . In vivo MRI mapping of brain iron deposition across the adult lifespan. J Neurosci 2016;36:364–74 doi:10.1523/JNEUROSCI.1907-15.2016 pmid:26758829
    Abstract/FREE Full Text
  29. 29.↵
    1. Jang H,
    2. Drygalski A,
    3. Wong J, et al
    . Ultrashort echo time quantitative susceptibility mapping (UTE‐QSM) for detection of hemosiderin deposition in hemophilic arthropathy: a feasibility study. Magn Reson Med 2020;84:3246–55 doi:10.1002/mrm.28388 pmid:32662904
    CrossRefPubMed
  30. 30.↵
    1. Jang H,
    2. Lu X,
    3. Carl M, et al
    . True phase quantitative susceptibility mapping using continuous single‐point imaging: a feasibility study. Magn Reson Med 2019;81:1907–14 doi:10.1002/mrm.27515 pmid:30325058
    CrossRefPubMed
  31. 31.↵
    1. Latta P,
    2. Starcuk Z,
    3. Kojan M, et al
    . Simple compensation method for improved half-pulse excitation profile with rephrasing gradient. Magn Reson Med 2020;84:1796–1805 doi:10.1002/mrm.28233 pmid:32129544
    CrossRefPubMed
  32. 32.↵
    1. Ma YJ,
    2. Searleman A,
    3. Jang H, et al
    . Whole-brain myelin mapping using 3D double echo sliding inversion recovery ultrashort echo time (DESIRE UTE) MRI. Radiology 2020;294:362–74 doi:10.1148/radiol.2019190911 pmid:31746689
    CrossRefPubMed
  33. 33.↵
    1. Jang H,
    2. Wei Z,
    3. Wu M, et al
    . Improved volumetric myelin imaging in human brain using 3D dual echo inversion recovery-prepared UTE with complex echo subtraction. Magn Reson Med 2020;83:1168–77 doi:10.1002/mrm.28082 pmid:31746487
    CrossRefPubMed
PreviousNext
Back to top
Advertisement
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on American Journal of Neuroradiology.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Inversion Recovery Ultrashort TE MR Imaging of Myelin is Significantly Correlated with Disability in Patients with Multiple Sclerosis
(Your Name) has sent you a message from American Journal of Neuroradiology
(Your Name) thought you would like to see the American Journal of Neuroradiology web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Inversion Recovery Ultrashort TE MR Imaging of Myelin is Significantly Correlated with Disability in Patients with Multiple Sclerosis
H. Jang, Y.-J. Ma, E.Y. Chang, S. Fazeli, R.R. Lee, A.F. Lombardi, G.M. Bydder, J. Corey-Bloom, J. Du
American Journal of Neuroradiology Feb 2021, DOI: 10.3174/ajnr.A7006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Inversion Recovery Ultrashort TE MR Imaging of Myelin is Significantly Correlated with Disability in Patients with Multiple Sclerosis
H. Jang, Y.-J. Ma, E.Y. Chang, S. Fazeli, R.R. Lee, A.F. Lombardi, G.M. Bydder, J. Corey-Bloom, J. Du
American Journal of Neuroradiology Feb 2021, DOI: 10.3174/ajnr.A7006
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Purchase

Jump to section

  • Article
    • Abstract
    • ABBREVIATIONS:
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • CONCLUSIONS
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Crossref
  • Google Scholar

This article has not yet been cited by articles in journals that are participating in Crossref Cited-by Linking.

More in this TOC Section

ADULT BRAIN

  • MGMT Promoter Methylation Status in Initial and Recurrent Glioblastoma: Correlation Study with DWI and DSC PWI Features
  • Traumatic Cerebral Microbleeds in the Subacute Phase Are Practical and Early Predictors of Abnormality of the Normal-Appearing White Matter in the Chronic Phase
  • CTA Evaluation of Basilar Septations: An Entity Better Characterized as Aberrant Basilar Fenestrations
Show more ADULT BRAIN

FUNCTIONAL

  • MGMT Promoter Methylation Status in Initial and Recurrent Glioblastoma: Correlation Study with DWI and DSC PWI Features
  • Traumatic Cerebral Microbleeds in the Subacute Phase Are Practical and Early Predictors of Abnormality of the Normal-Appearing White Matter in the Chronic Phase
Show more FUNCTIONAL

Similar Articles

Advertisement

News and Updates

  • Lucien Levy Best Research Article Award
  • Thanks to our 2020 Distinguished Reviewers
  • Press Releases

Resources

  • Evidence-Based Medicine Level Guide
  • How to Participate in a Tweet Chat
  • AJNR Podcast Archive
  • Ideas for Publicizing Your Research
  • Librarian Resources
  • Terms and Conditions

Opportunities

  • Share Your Art in Perspectives
  • Get Peer Review Credit from Publons
  • Moderate a Tweet Chat

American Society of Neuroradiology

  • Neurographics
  • ASNR Annual Meeting
  • Fellowship Portal
  • Position Statements

© 2021 by the American Society of Neuroradiology | Print ISSN: 0195-6108 Online ISSN: 1936-959X

Powered by HighWire