
of April 4, 2024.
This information is current as

Convolutional Neural Network
CT Cervical Spine Fracture Detection Using a

J.E. Small, P. Osler, A.B. Paul and M. Kunst

http://www.ajnr.org/content/early/2021/04/01/ajnr.A7094
 published online 1 April 2021AJNR Am J Neuroradiol 

http://www.ajnr.org/cgi/adclick/?ad=57533&adclick=true&url=https%3A%2F%2Flinkprotect.cudasvc.com%2Furl%3Fa%3Dhttps%253a%252f%252fwww.genericcontrastagents.com%252f%253futm_source%253dAmerican_Journal_Neuroradiology%2526utm_medium%253dPDF_Banner%2526utm_c
http://www.ajnr.org/content/early/2021/04/01/ajnr.A7094


ORIGINAL RESEARCH
SPINE

CT Cervical Spine Fracture Detection Using a Convolutional
Neural Network

J.E. Small, P. Osler, A.B. Paul, and M. Kunst

ABSTRACT

BACKGROUND AND PURPOSE: Multidetector CT has emerged as the standard of care imaging technique to evaluate cervical spine
trauma. Our aim was to evaluate the performance of a convolutional neural network in the detection of cervical spine fractures on CT.

MATERIALS AND METHODS:We evaluated C-spine, an FDA-approved convolutional neural network developed by Aidoc to detect cer-
vical spine fractures on CT. A total of 665 examinations were included in our analysis. Ground truth was established by retrospective vis-
ualization of a fracture on CT by using all available CT, MR imaging, and convolutional neural network output information. The Œ

coefficients, sensitivity, specificity, and positive and negative predictive values were calculated with 95% CIs comparing diagnostic accu-
racy and agreement of the convolutional neural network and radiologist ratings, respectively, compared with ground truth.

RESULTS: Convolutional neural network accuracy in cervical spine fracture detection was 92% (95% CI, 90%–94%), with 76% (95%
CI, 68%–83%) sensitivity and 97% (95% CI, 95%–98%) specificity. The radiologist accuracy was 95% (95% CI, 94%–97%), with 93%
(95% CI, 88%–97%) sensitivity and 96% (95% CI, 94%–98%) specificity. Fractures missed by the convolutional neural network and by
radiologists were similar by level and location and included fractured anterior osteophytes, transverse processes, and spinous proc-
esses, as well as lower cervical spine fractures that are often obscured by CT beam attenuation.

CONCLUSIONS: The convolutional neural network holds promise at both worklist prioritization and assisting radiologists in cervical
spine fracture detection on CT. Understanding the strengths and weaknesses of the convolutional neural network is essential
before its successful incorporation into clinical practice. Further refinements in sensitivity will improve convolutional neural net-
work diagnostic utility.

ABBREVIATIONS: AI ¼ artificial intelligence; CNN ¼ convolutional neural network; NPV ¼ negative predictive value; PPV ¼ positive predictive value

Avariety of studies have been conducted evaluating the per-
formance of artificial intelligence (AI) to detect fractures. AI

has been used to detect hip,1-3 humeral,4 distal radius,5 wrist,6-8

hand,8 and ankle fractures8 on radiographs, as well as thoracic
and lumbar spine fractures on dual x-ray absorptiometry.9 In
addition, AI has been used to detect calcaneal10 and thoracic and
lumbar vertebral body fractures11-13 on CT. To our knowledge,
no studies evaluating AI in detecting cervical spine fractures on
CT have been published.

Cervical spine injury is common with greater than 3 million
patients per year being evaluated for cervical spine injury in North

America,14 and greater than 1 million patients with blunt trauma

with suspected cervical spine injury per year being evaluated in the

United States.15 Cervical spine injury can be associated with high

morbidity and mortality,16 and a delay in diagnosis of an unstable

fracture leading to inadequate immobilization may result in a cata-

strophic decline in neurologic function with devastating conse-

quences.17-20 Clearing the cervical spine through imaging is

therefore a critical first step in the evaluation of patients with

trauma, and multidetector CT has emerged as the standard of care

imaging technique to evaluate cervical spine trauma.21 Morbidity

and mortality in patients with cervical spine injury can be reduced

through rapid diagnosis and intervention.
The aim of this study is to evaluate the performance of a con-

volutional neural network (CNN) developed by Aidoc (www.

aidoc.com) for the detection of cervical spine fractures on CT.

We establish the presence of fractures based on retrospective clin-
ical diagnosis and compare the CNN performance with that of

radiologists. Aidoc’s CNN currently runs continuously on our
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hospital system and functions as a triage and notification software
for analysis and detection of cervical spine fractures. However,
we purposefully conducted a retrospective study on cervical spine
studies performed before system-wide deployment, as we wanted
to compare CNN performance to radiologist performance with-
out the aid of the tool. A proficient algorithm may help identify
and triage studies for the radiologist to review more urgently,
helping to ensure faster diagnoses.

MATERIALS AND METHODS
After approval by our institutional review board, we conducted a
retrospective analysis of the predictions of an FDA-approved
CNN developed by Aidoc for the identification of cervical spine
fractures based on CT. We compared these predictions to the
unaided diagnoses made by radiologists of different levels of ex-
pertise and training. Our criterion standard for the presence or
absence of cervical spine fractures was based on retrospective
consensus review by 2 fellowship-trained neuroradiologists after
evaluating all available CT, MR imaging, and CNN data.

CNN Algorithm Development
We evaluated an FDA-approved CNN developed by Aidoc for
cervical spine fracture detection on CT. The CNN is designed to
detect linear bony lucency in patterns consistent with fracture
(including compression), does not distinguish between acute and
chronic fractures, and is limited to the cervical spine (C1–7).

The hardware used for developing and validating the CNN
included 8 GPUs, 64 CPUs, 488 GB of RAM, and 128 GB of GPU
memory. Validation was based on retrospective, blinded data
from 47 clinical sites evaluating approximately 8000 examina-
tions. Nearly equal amounts of positive and negative examina-
tions were included in the analysis. Validation sensitivity was
95.8% (95% CI, 95.7%–95.9%) and specificity was 98.5% (95% CI,
98.5%–98.5%). Approximately 12,000 studies from 83 clinical
sites were used for training the algorithm, and 80% of them were
positive. The CNN training data base was made from datasets
from all commercially available CT scanners, and included all
available imaging planes (axial, coronal, and sagittal) and kernels
(bone and soft tissue). The training data base labeling was based
on manual review and annotation of fractures by neuroradiolo-
gists experienced in spine trauma.

The cervical spine fracture detection model consists of 2 stages:
a region proposal stage and a false-positive reduction stage. The
first stage is a 3D fully convolutional deep neural network. The
architecture is based on the Residual Network architecture, which
consists of repeated blocks of several convolutional layers with skip
connections between them, and is followed by a pooling layer that
reduces the dimensions of the output. This network is trained on
segmented scans and produces a 3D segmentation map. The
model was trained from scratch, with no pretraining from addi-
tional datasets. From the segmentation map, region proposals are
extracted and passed as input to the second stage of the algorithm.
The second stage classifies each region as positive or negative. Two
sets of features are extracted from each region, fused together, and
used for the final decision. The first are learned features from a
multilayered, classification head that receives the features from the
last layer of the 3D segmentation network for the proposed regions

as input. The second are nonlearned engineered features obtained
from traditional image-processing methods that operate on the
proposed regions. These features are combined through an addi-
tional neural network, which classifies each proposal as a fracture
or not.

Validation Dataset
We queried the PACS for cervical spine CT studies performed
between January 3, 2015, and December 30, 2018 (a time before
system-wide deployment of the CNN algorithm at our institu-
tion), in patients who also had a short interval follow-up cervical
spine MR imaging (,48 hours). In particular, we limited the
analysis to cervical spine CT studies with a short interval follow-
up MR imaging so that the MR imaging data could aid in the ret-
rospective criterion standard determination of acute fractures. Of
note, examinations at our institution have cervical spine MR
imaging after a CT when there is a persistent clinical concern for
cervical spine trauma despite a negative cervical spine CT, or in
patients with positive cervical spine CT findings for trauma to
evaluate for cord contusion, ligamentous injury, or epidural
hemorrhage.

The CNN validation was made of datasets acquired from
multiple institutions on all commercially available CT scanners
with differences in FOV and section thickness. Similarly, the
study group included datasets acquired on different commer-
cially available CT scanners at both Lahey Hospital and Medical
Center and affiliate institutions with differences in FOV and
section thickness. MR images used to troubleshoot examina-
tions were performed at both 1.5T and 3T and were not eval-
uated by the CNN. The finalized cervical spine CT reports were
simultaneously independently reviewed by 2 fellowship-trained
neuroradiologists. To achieve labeling consensus maximizing
ground truth assessment in our study, the decision was made to
have 2 neuroradiologists who had each completed a 2-year neu-
roradiology fellowship and obtained the Certificate of Added
Qualification review each report. Results were classified as posi-
tive or negative for fracture.

Error Analysis
The cervical spine CTs were interpreted and dictated at the
time of patient presentation by a diverse group of radiologists.
This group consisted of neuroradiologists (some of whom had
obtained the Certificate of Added Qualification), emergency
department radiologists, general private practice radiologists
from affiliate hospitals, and remote overnight coverage night-
hawk radiologists (some of whom had completed fellowship
training in neuroradiology). Meaningful analysis and conclu-
sions comparing the CNN to different-level radiologists was
not feasible because of the wide variety of training back-
grounds and small number of radiologists within some of the
groups. Research data analysis was performed by neuroradiol-
ogists who had completed a 2-year neuroradiology fellowship
and obtained the Certificate of Added Qualification. Ground
truth labeling was obtained by retrospective visualization of a
fracture on CT after using all available CT, MR imaging, and
CNN information and was performed independently by 2 fel-
lowship-trained neuroradiologists. Discrepant CNN positive
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examinations were reviewed both on a custom web-based
viewer and in the PACS. The finalized CT reports and primary
CNN output were graded against the ground truth.

Only fractures involving the cervical spine (C1–7), as well as
both acute and chronic fractures, were labeled true-positives to
match the design of the CNN. Postsurgical changes, congenital

fusion anomalies, nutrient foramina,
degenerative changes, and artifact
were labeled negative for fracture.
Traumatic disc injuries were labeled
true-negatives as they do not match
the design of the CNN by failing to
contain a linear bony lucency in a pat-
tern consistent with fracture.

Our study data base included
datasets from several referring insti-
tutions with different scanner manu-
facturers and techniques mimicking
the heterogeneity of the CNN train-
ing data base. Most of the exam-
inations at our institution were per-
formed on an Ingenuity CT scan-
ner (Philips Healthcare) with 1.5mm
axial section thickness and 1mm cor-
onal and sagittal reformats.

Diagnostic accuracy and agree-
ment between the radiologist and the
ground truth, and between the CNN
and ground truth, was evaluated by
using Œ coefficients, sensitivity/speci-
ficity, positive predictive value (PPV),
and negative predictive value (NPV).
The 95% confidence intervals were
calculated for each estimate.

RESULTS
A total of 869 cervical spine CT
examinations were initially identified.
The patient age range was 16–98 years,
with an average of 60.28 years and a
median of 61 years. A total of 379
patients were men (54.5%) and 316

FIG 1. CNN and radiologist performance.

FIG 2. Location of false-negative and false-positive fractures for the radiologists and the CNN.
Each location instance is marked by a red dot. False-negative fractures by radiologists (A) and the
CNN (B) were similar in site and distribution. Although both the radiologists and CNN missed
fractures more commonly along the lower cervical spine, errors were more numerous for the
CNN. False-positive fracture sites noted by radiologists (C) and the CNN (D) can also be com-
pared side-by-side. Numerous findings can mimic fractures on CT, most commonly degenerative
changes or nutrient foramina. These fracture mimics were misinterpreted by both radiologists
and the CNN. False-positive fractures along the anterior corners of vertebral bodies were slightly
more commonly noted by radiologists and false-positive fractures along the facets and trans-
verse processes were more commonly identified by the CNN.

FIG 3. Fracture-positive, radiologist false-negative, CNN false-negative case example. Axial (A), sagittal (B), and coronal (C) cervical spine CT
images, and sagittal fat-saturated T2-weighted cervical spine MR image (D) demonstrate a minimally displaced C4 spinous process fracture. Red
arrows demarcate fracture lines, the blue arrow demarcates prevertebral edema, and the orange arrow demarcates interspinous and supraspi-
nous ligamentous injury. This case example illustrates a subtle fracture missed by both the radiologist and CNN that was identified in retrospect
with the help of MR imaging because of the presence of secondary signs, such a prevertebral edema and ligamentous injury.
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were women (45.5%). Twelve examina-
tions were duplicates and 162 examina-
tions could not be processed by the
CNN. A total of 157 of the 162 excluded
examinations could not be retrieved
from the PACS by the CNN because
they were imported from an out-
side hospital without an identifiable
DICOM header. The remaining 5 of the
162 excluded examinations could not
be analyzed by the CNN because of
technical issues with the datasets. These
technical issues related to a few prepro-
cessing steps of the CNN orchestrator,
which assure that the study is techni-
cally adequate for analysis. These
include inconsistent DICOM tags or
missing slices that would compromise
the processing. The fracture prevalence
in the excluded dataset is similar to the
fracture prevalence in the included data-
set. For example, 35 of the 162 excluded
examinations were positive for fracture
(22%) compared with 143 of the 695
included examinations (21%). Because
this was a retrospective study of datasets
acquired before CNN implementation,
the percentage of excluded examina-
tions on datasets acquired after CNN
implementation is likely to be much
smaller based on the availability of tech-
nical support from the CNN developer
and the presence of reliable DICOM
tags. Consequently, we feel the true ac-
curacy of the CNN to be comparable
with the accuracy demonstrated in our
study. Out of the 695 remaining exami-
nations, 30 examinations had fractures
outside of the cervical spine (C1–7) and
were excluded from our analysis, for a
final sample size of 665 examinations. A
total of 143 examinations were labeled
positive for fracture and 522 examina-
tions were labeled negative for fracture
by ground truth analysis.

For the radiologists, there were 133
examinations labeled true-positive in
which fractures were noted in the
report and 502 examinations labeled
true-negative in which no fractures
were noted in the report. There were
20 examinations labeled false-positive
in which a fracture was mentioned in
the report but both MR imaging and
CNN output were negative for fracture.
There were 10 examinations labeled
false-negative in which no fracture was

FIG 4. Fracture-positive, radiologist true-positive, CNN false-negative case example. Axial (A) and
sagittal (B) cervical spine CT images, and sagittal fat-saturated T2-weighted cervical spine MR
image (C) demonstrate a C6–7 fracture-dislocation with cord compression. Red arrows demar-
cate fracture-dislocation, the blue arrow demarcates prevertebral edema, and the orange arrow
demarcates cord compression. This case example illustrates an important drawback of the CNN
to overlook areas of gross bony translation, as it was only designed to detect linear bony lucency
in patterns consistent with fractures.

FIG 5. Fracture-positive, radiologist true-positive, CNN false-negative case example. Axial (A)
and sagittal (B) cervical spine CT images, and sagittal fat-saturated T2-weighted cervical spine
MR image (C) demonstrate multiple fractures involving the C7 and T1 vertebral bodies and C6
spinous process with epidural hematoma and associated cord compression. Red arrows
demarcate fracture lines and the blue arrow demarcates epidural hematoma. This case exam-
ple illustrates important drawbacks of the algorithm to miss fractures characterized more by
distraction rather than linear bony lucency, fractures involving the distal aspects of the spi-
nous processes that may be mistaken for nuchal ligament calcification or ossification, and
fractures located in the lower cervical spine where fine bony detail becomes poor from CT
beam attenuation.

FIG 6. Fracture-positive, radiologist false negative, CNN true positive case example. Axial (A) and
sagittal (B) cervical spine CT images and sagittal (C) STIR cervical spine MR image demonstrate a
minimally displaced right C7 superior articulating facet fracture. Red and blue arrows demarcate
fracture lines. This case example illustrates the strength of the algorithm to detect subtle frac-
tures when they conform to linear bony lucencies.
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mentioned in the report but either MR imaging or CNN output

were positive for fracture and the fracture could be visualized in

retrospect on the cervical spine CT. The PPV and NPV for the

radiologist was 87% (95% CI, 81%–92%) and 98% (95% CI, 96%–

99%), respectively. The sensitivity, specificity, and percent agree-

ment were 93% (95% CI, 88%–97%), 96% (95% CI, 94%–98%),

and 95.5% (95% CI, 94%–97%), respectively. The Œ coefficient was

0.87 (95% CI, 0.82–0.92). The time from acquisition until a final-

ized report for the radiologist ranged from 33 to 43minutes.

For the CNN, there were 109
examinations labeled true-positive and
505 examinations labeled true-negative
that matched ground truth labeling.
There were 17 examinations labeled
false-positive in which the CNN
detected a fracture, but both the radiol-
ogist and MR imaging reports were
negative for fracture. There were 34
examinations labeled false-negative in
which the CNN failed to detect a frac-
ture that was seen in both the radiolog-
ist and MR imaging reports. The PPVs
and NPVs for the CNN were 87%
(95% CI, 79%–92%) and 94% (95% CI,
91%–96%), respectively. The sensitiv-
ity, specificity, and percent agreement
for the CNN was 76% (95% CI, 68%–
83%), 97% (95%–98%), and 92% (95%
CI, 90%–94%), respectively. The Œ
coefficient was 0.76 (95% CI, 0.70–
0.82). The time from acquisition until a
CNN analysis report ranged from 3 to
8minutes.

To address the concern of selection
bias in our sample (with an incidence
of 21.5%), extrapolation to a popula-
tion with an incidence of 1.9% as
reported by Inaba et al16 of cervical
fracture was conducted. With the
same sample size and values of sensi-
tivity and specificity as found above,
estimated PPVs and NPVs for the
radiologist’s ratings were 32% (95%
CI, 18%–50%) and 99.9% (95% CI,
99%–100%), and for the CNN’s rat-
ings, they were 30% (95% CI, 15%–
49%) and 99.5% (95% CI, 99%–100%).

In 7 examinations labeled true-posi-
tive, the CNN detected a fracture that
the radiologist missed on CT and
MR imaging. In 4 examinations labeled
true-positive, the fracture detected by
the CNN was chronic.

The results for CNN-versus-radiol-
ogist performance are summarized in

Fig 1. The location of false-negative and false-positive fractures
for the CNN and radiologist are compared in Fig 2. Several in-
structive examples are depicted in Figs 3–10.

DISCUSSION
We evaluated the performance of a CNN designed to detect cervi-
cal spine fractures on CT and compared it to that of radiologists.
Our dataset contained a high fracture prevalence because of our
decision to limit our analysis to only those examinations that

FIG 7. Fracture-negative, radiologist false positive, CNN false positive case example. Sagittal (A)
cervical spine CT image and sagittal (B) STIR and sagittal (C) T1-weighted cervical spine MR images
demonstrate a small depression along the anterosuperior margin of the C6 vertebral body (red
arrow) without associated bone marrow edema, prevertebral edema, or disc space widening
(blue circles). This case example illustrates how both the radiologist and CNN algorithm are capa-
ble of ignoring the absence of secondary signs, such as prevertebral edema and disc space widen-
ing when incorrectly identifying a fracture.

FIG 8. Fracture-negative, radiologist false positive, CNN true negative case example. Sagittal (A)
cervical spine CT image and sagittal (B) STIR cervical spine MR image demonstrate a nutrient fora-
men/trabecular variant within the dens (red arrow) without associated bone marrow edema
(blue circle). This case example illustrates the ability of the AI algorithm to exclude those linear
bony lucencies that contain sclerotic margins inconsistent with fracture.
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contained a short interval follow-up cervical spine MR imaging.
This decision was made to ensure the veracity of our ground
truth analysis because the group of interpreting radiologists in
our study was diverse and had individuals with various experi-
ence in cervical spine trauma evaluation.

The CNN in our study demon-
strated an accuracy of 92% compared
with 96% for the radiologists, under-
scoring the capability of the CNN at
fracture detection. In addition, time
from image acquisition to CNN analy-
sis was considerably shorter than the
time from image acquisition to radiol-
ogist report finalization emphasizing
the value of the CNN in worklist pri-
oritization. This benefit would be of
greater value to high-volume practices
that may have even longer radiology
interpretation times. There is tremen-
dous potential for worklist prioritiza-
tion to improve patient outcomes
by decreasing time to diagnosis and
therapeutic intervention for unstable
fractures.

The sensitivity of the CNN (79%) is
lower than that of the radiologists

(93%). CNN output should therefore be appraised after the radiol-
ogist’s imaging review. Further work to improve CNN sensitivity is
particularly important if CNNs are to become widely accepted as
valuable worklist prioritization tools. Importantly, the clinically
more useful parameters of PPV and NPV were comparable
between the CNN and radiologists in our dataset consisting of a
high fracture prevalence.

Our review of the few CNN false-negative examinations demon-
strates that the locations of CNNmisses closely match those of radi-
ologists. Knowledge of this is important as radiologists need to be
aware of the locations where the CNN performs poorly in order to
subject these locations to additional scrutiny before report finaliza-
tion. The few instances in which the CNN detected a fracture that
the radiologist missed underscores the ability of the CNN to func-
tion as a valuable complementary tool in fracture detection that
should be reviewed by the radiologist before report finalization to
maximize overall fracture detection sensitivity.

Discrepant examinations reveal important limitations of the
CNN. As noted in Fig 4, a severe fracture-dislocation was missed
by the CNN algorithm. In addition, as noted in Fig 5, fractures
characterized more by distraction rather than linear bony
lucency, fractures involving the distal aspects of the spinous proc-
esses that may be mistaken for nuchal ligament calcification or
ossification, and fractures located in the lower cervical spine
where fine bony detail becomes poor from CT beam attenuation
were also missed by the CNN. Fractures of these types must be
added to the CNN training dataset as they will need to be
detected if CNNs are to become increasingly valuable worklist
prioritization tools.

Study design and selection bias are important limitations to
our study, diminishing the generalizability of our findings. Most
scans were performed at a single primary site and therefore a
prospective, multicenter trial will need to be pursued next. In
addition, our dataset contained a high fracture prevalence mini-
mizing the number of clinically occult fractures and potentially
falsely elevating our reported CNN and radiologist sensitivity. If

FIG 9. Fracture-negative, radiologist true negative, CNN false positive case example. Axial (A) and
sagittal (B) cervical spine CT images demonstrate congenital thinning and incomplete fusion of the
left C1 lamina. Red arrows demarcate congenital thinning and incomplete fusion. This case example
illustrates a limitation of the AI algorithm to mistake common congenital anomalies for fractures if
the image contains linear bony lucency extending into the cortex.

FIG 10. Fracture-negative, radiologist true-negative, CNN false-posi-
tive case example. Axial cervical spine CT image demonstrates a post-
surgical defect involving the right lamina secondary to laminoplasty.
Red arrow demarcates postsurgical defect. This case example illus-
trates a drawback of the algorithm to fail to differentiate postsurgical
changes from fractures.
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we extrapolate our sample size and values for sensitivity and
specificity to a dataset that contains a much lower fracture prev-
alence on par with that observed in previously reported multi-
institutional cervical spine trauma trials, the PPVs for the CNN
and radiologist drop below the threshold of clinical utility.
Consequently, we view our results as an important first step to
demonstrate CNN effectiveness in cervical spine fracture detec-
tion in a dataset with a high fracture prevalence with robust
ground truth analysis, which will need to be replicated in a data-
set with a lower fracture prevalence similar to routine clinical
practice.

CONCLUSIONS
The CNN holds promise at both worklist prioritization and
assisting radiologists in cervical spine fracture detection on CT.

CNN plays an important role in prioritizing fracture-positive

examinations on the worklist. Further refinements in sensitivity

will improve CNN diagnostic utility. Understanding the strengths

and weaknesses of the CNN is essential before its successful incor-

poration into clinical practice. In the evaluation of individual

examinations, the current role of the CNN in fracture detection is

secondary to a thorough review by a radiologist and should always

be reviewed before report finalization.

Disclosures: Juan Small—UNRELATED: Royalties: Elsevier book royalties.
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