PT - JOURNAL ARTICLE AU - C. Badve AU - A. Yu AU - S. Dastmalchian AU - M. Rogers AU - D. Ma AU - Y. Jiang AU - S. Margevicius AU - S. Pahwa AU - Z. Lu AU - M. Schluchter AU - J. Sunshine AU - M. Griswold AU - A. Sloan AU - V. Gulani TI - MR Fingerprinting of Adult Brain Tumors: Initial Experience AID - 10.3174/ajnr.A5035 DP - 2017 Mar 01 TA - American Journal of Neuroradiology PG - 492--499 VI - 38 IP - 3 4099 - http://www.ajnr.org/content/38/3/492.short 4100 - http://www.ajnr.org/content/38/3/492.full SO - Am. J. Neuroradiol.2017 Mar 01; 38 AB - BACKGROUND AND PURPOSE: MR fingerprinting allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assessed the utility of MR fingerprinting in differentiating common types of adult intra-axial brain tumors.MATERIALS AND METHODS: MR fingerprinting acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 World Health Organization grade II lower grade gliomas, and 8 metastases. T1, T2 of the solid tumor, immediate peritumoral white matter, and contralateral white matter were summarized within each ROI. Statistical comparisons on mean, SD, skewness, and kurtosis were performed by using the univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple-comparison testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases, and area under the receiver operator curve was calculated.RESULTS: Mean T2 values could differentiate solid tumor regions of lower grade gliomas from metastases (mean, 172 ± 53 ms, and 105 ± 27 ms, respectively; P = .004, significant after Bonferroni correction). The mean T1 of peritumoral white matter surrounding lower grade gliomas differed from peritumoral white matter around glioblastomas (mean, 1066 ± 218 ms, and 1578 ± 331 ms, respectively; P = .004, significant after Bonferroni correction). Logistic regression analysis revealed that the mean T2 of solid tumor offered the best separation between glioblastomas and metastases with an area under the curve of 0.86 (95% CI, 0.69–1.00; P < .0001).CONCLUSIONS: MR fingerprinting allows rapid simultaneous T1 and T2 measurement in brain tumors and surrounding tissues. MR fingerprinting–based relaxometry can identify quantitative differences between solid tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas.CWcontralateral white matterGBMglioblastoma multiformeIDH1isocitrate dehydrogenase 1LGGlower grade gliomaMETmetastasisMRFMR fingerprintingPWperitumoral white matterSTsolid tumor