RT Journal Article SR Electronic T1 Early White Matter Changes in Childhood Multiple Sclerosis: A Diffusion Tensor Imaging Study JF American Journal of Neuroradiology JO Am. J. Neuroradiol. FD American Society of Neuroradiology DO 10.3174/ajnr.A3581 A1 A. Blaschek A1 D. Keeser A1 S. Müller A1 I.K. Koerte A1 A. Sebastian Schröder A1 W. Müller-Felber A1 F. Heinen A1 B. Ertl-Wagner YR 2013 UL http://www.ajnr.org/content/early/2013/05/16/ajnr.A3581.abstract AB BACKGROUND AND PURPOSE: Loss of integrity in nonlesional white matter occurs as a fundamental feature of multiple sclerosis in adults. The purpose of our study was to evaluate DTI-derived measures of white matter microstructure in children with MS compared with age- and sex-matched controls by using tract-based spatial statistics. MATERIALS AND METHODS: Fourteen consecutive pediatric patients with MS (11 female/3 male; mean age, 15.1 ± 1.6 years; age range, 12–17 years) and age- and sex-matched healthy subjects (11 female/3 male; mean age, 14.8 ± 1.7 years) were included in the study. After we obtained DTI sequences, data processing was performed by using tract-based spatial statistics. RESULTS: Compared with healthy age- and sex-matched controls, children with multiple sclerosis showed a global decrease in mean fractional anisotropy (P ≤ .001), with a concomitant increase in mean (P < .001), radial (P < .05), and axial diffusivity (P < .001). The most pronounced fractional anisotropy value decrease in patients with MS was found in the splenium of the corpus callosum (P < .001). An additional decrease in fractional anisotropy was identified in the right temporal and right and left parietal regions (P < .001). Fractional anisotropy of the white matter skeleton was related to disease duration and may, therefore, serve as a diagnostic marker. CONCLUSIONS: The microstructure of white matter is altered early in the disease course in childhood multiple sclerosis. Abbreviations ADaxial diffusivityFAfractional anisotropyMDmean diffusivityRDradial diffusivityTBSStract-based spatial statistics