TY - JOUR T1 - Quantifying Intracranial Aneurysm Wall Permeability for Risk Assessment Using Dynamic Contrast-Enhanced MRI: A Pilot Study JF - American Journal of Neuroradiology JO - Am. J. Neuroradiol. DO - 10.3174/ajnr.A4225 AU - P. Vakil AU - S.A. Ansari AU - C.G. Cantrell AU - C.S. Eddleman AU - F.H. Dehkordi AU - J. Vranic AU - M.C. Hurley AU - H.H. Batjer AU - B.R. Bendok AU - T.J. Carroll Y1 - 2015/02/19 UR - http://www.ajnr.org/content/early/2015/02/19/ajnr.A4225.abstract N2 - BACKGROUND AND PURPOSE: Pathological changes in the intracranial aneurysm wall may lead to increases in its permeability; however the clinical significance of such changes has not been explored. The purpose of this pilot study was to quantify intracranial aneurysm wall permeability (Ktrans, VL) to contrast agent as a measure of aneurysm rupture risk and compare these parameters against other established measures of rupture risk. We hypothesized Ktrans would be associated with intracranial aneurysm rupture risk as defined by various anatomic, imaging, and clinical risk factors. MATERIALS AND METHODS: Twenty-seven unruptured intracranial aneurysms in 23 patients were imaged with dynamic contrast-enhanced MR imaging, and wall permeability parameters (Ktrans, VL) were measured in regions adjacent to the aneurysm wall and along the paired control MCA by 2 blinded observers. Ktrans and VL were evaluated as markers of rupture risk by comparing them against established clinical (symptomatic lesions) and anatomic (size, location, morphology, multiplicity) risk metrics. RESULTS: Interobserver agreement was strong as shown in regression analysis (R2 > 0.84) and intraclass correlation (intraclass correlation coefficient >0.92), indicating that the Ktrans can be reliably assessed clinically. All intracranial aneurysms had a pronounced increase in wall permeability compared with the paired healthy MCA (P < .001). Regression analysis demonstrated a significant trend toward an increased Ktrans with increasing aneurysm size (P < .001). Logistic regression showed that Ktrans also predicted risk in anatomic (P = .02) and combined anatomic/clinical (P = .03) groups independent of size. CONCLUSIONS: We report the first evidence of dynamic contrast-enhanced MR imaging–modeled contrast permeability in intracranial aneurysms. We found that contrast agent permeability across the aneurysm wall correlated significantly with both aneurysm size and size-independent anatomic risk factors. In addition, Ktrans was a significant and size-independent predictor of morphologically and clinically defined high-risk aneurysms. Abbreviations DCEdynamic contrast-enhancedIAintracranial aneurysmISUIAInternational Study of Unruptured Intracranial AneurysmsKtranscontrast-transfer coefficientVLfractional volume of extravascular extracellular space per unit tissue ER -