PT - JOURNAL ARTICLE AU - Z. Qiao AU - X. Zhao AU - K. Wang AU - Y. Zhang AU - D. Fan AU - T. Yu AU - H. Shen AU - Q. Chen AU - L. Ai TI - Utility of Dynamic Susceptibility Contrast Perfusion-Weighted MR Imaging and <sup>11</sup>C-Methionine PET/CT for Differentiation of Tumor Recurrence from Radiation Injury in Patients with High-Grade Gliomas AID - 10.3174/ajnr.A5952 DP - 2019 Feb 01 TA - American Journal of Neuroradiology PG - 253--259 VI - 40 IP - 2 4099 - http://www.ajnr.org/content/40/2/253.short 4100 - http://www.ajnr.org/content/40/2/253.full SO - Am. J. Neuroradiol.2019 Feb 01; 40 AB - BACKGROUND AND PURPOSE: Both 11C-methionine PET/CT and DSC-PWI could be used to differentiate radiation injury from recurrent brain tumors. Our aim was to assess the performance of MET PET/CT and DSC-PWI for differentiation of recurrence and radiation injury in patients with high-grade gliomas and to quantitatively analyze the diagnostic values of PET and PWI parameters.MATERIALS AND METHODS: Forty-two patients with high-grade gliomas were enrolled in this study. The final diagnosis was determined by histopathologic analysis or clinical follow-up. PWI and PET parameters were recorded and compared between patients with recurrence and those with radiation injury using Student t tests. Receiver operating characteristic and logistic regression analyses were used to determine the diagnostic performance of each parameter.RESULTS: The final diagnosis was recurrence in 33 patients and radiation injury in 9. PET/CT showed a patient-based sensitivity and specificity of 0.909 and 0.556, respectively, while PWI showed values of 0.667 and 0.778, respectively. The maximum standardized uptake value, mean standardized uptake value, tumor-to-background maximum standardized uptake value, and mean relative CBV were significantly higher for patients with recurrence than for patients with radiation injury. All these parameters showed a high discriminative power in receiver operating characteristic analysis. The optimal cutoff values for the tumor-to-background maximum standardized uptake value and mean relative CBV were 1.85 and 1.83, respectively, and corresponding sensitivities and specificities for the diagnosis of recurrence were 0.97 and 0.667 and 0.788 and 0.88, respectively. Areas under the curve for the tumor-to-background maximum standardized uptake value and mean relative CBV were 0.847 ± 0.077 and 0.845 ± 0.078, respectively. Combined assessment of the tumor-to-background maximum standardized uptake value and mean relative CBV showed the largest area under the curve (0.953 ± 0.031), with corresponding sensitivity and specificity of 0.848 and 1.0, respectively.CONCLUSIONS: Both 11C-methionine PET/CT and PWI are equally accurate in the differentiation of recurrence from radiation injury in patients with high-grade gliomas, and a combination of the 2 modalities could result in increased diagnostic accuracy.AUCarea under the curveMET11C-methionineHGGhigh-grade gliomamaxmaximumrCBVrelative CBVSUVstandardized uptake valueTBRtumor-to-background