%0 Journal Article %A C. Majós %A C. Aguilera %A J. Alonso %A M. Julià-Sapé %A S. Castañer %A J.J. Sánchez %A Á. Samitier %A A. León %A Á. Rovira %A C. Arús %T Proton MR Spectroscopy Improves Discrimination between Tumor and Pseudotumoral Lesion in Solid Brain Masses %D 2009 %R 10.3174/ajnr.A1392 %J American Journal of Neuroradiology %P 544-551 %V 30 %N 3 %X BACKGROUND AND PURPOSE: Differentiating between tumors and pseudotumoral lesions by conventional MR imaging may be a challenging question. This study aims to evaluate the potential usefulness and the added value that single-voxel proton MR spectroscopy could provide on this discrimination.MATERIALS AND METHODS: A total of 84 solid brain lesions were retrospectively included in the study (68 glial tumors and 16 pseudotumoral lesions). Single-voxel spectra at TE 30 ms (short TE) and 136 ms (long TE) were available in all cases. Two groups were defined: “training-set” (56 cases) and “test-set” (28 cases). Tumors and pseudotumors were compared in the training-set with the Mann-Whitney U test. Ratios between resonances were defined as classifiers for new cases, and thresholds were selected with receiver operating characteristic (ROC) curves. The added value of spectroscopy was evaluated by 5 neuroradiologists and assessed with the Wilcoxon signed-rank test.RESULTS: Differences between tumors and pseudotumors were found in myo-inositol (mIns); P < .01) at short TE, and N-acetylaspartate (NAA; P < .001), glutamine (Glx; P < .01), and choline (CHO; P < .05) at long TE. Classifiers suggested tumor when mIns/NAA ratio was more than 0.9 at short TE and also when CHO/NAA ratio was more than 1.9 at long TE. Classifier accuracy was tested in the test-set with the following results: short TE, 82% (23/28); long TE, 79% (22/28). The neuroradiologists’ confidence rating of the test-cases on a 5-point scale (0–4) improved between 5% (from 2.86–3) and 27% (from 2.25–2.86) with spectroscopy (mean, 17%; P < .01).CONCLUSIONS: The proposed ratios of mIns/NAA at short TE and CHO/NAA at long TE provide valuable information to discriminate between brain tumor and pseudotumor by improving neuroradiologists’ accuracy and confidence. %U https://www.ajnr.org/content/ajnr/30/3/544.full.pdf