
On-line Appendix
SPM8 (Wellcome Department of Imaging Neuroscience, Lon-
don, UK) preprocessed the qCBF and qCBV maps.1 The field-
echo-EPI DSC scan for each patient was spatially normalized
to the standard MNI space EPI template. The normalized
field-echo-EPI DSC scans were averaged to create a study-
specific EPI template in MNI space.2 The acquisition-space
field-echo-EPI DSC scans and the intrinsically coregistered
qCBF and qCBV maps were spatially normalized to the study-
specific EPI template and resampled to 2 � 2 � 2 mm. An
isotropic Gaussian kernel (8-mm full width at half maximum
[FWHM]) was applied.

The multispectral structural scans (ie, T1 and proton-
attenuation [PD]/T2) for each patient were segmented into
GM, WM, and CSF tissue probability maps using an auto-
mated validated algorithm.3 WMLs were hand-traced on PD/T2
scans using Medical Image Processing, Analysis, and Visual-
ization, Version 4.0 (National Institutes of Health, Bethesda,
Maryland) and algorithmically removed from GM and WM
tissue maps to correct potentially misclassified parenchymal
tissue. The corrected GM, WM, and WML tissue maps were
spatially normalized to MNI space using Diffeomorphic Ana-
tomical Registration Through Exponentiated Lie Algebra reg-
istration (http://brainmap.wisc.edu/pages/8-Normalizing),
resampled to 1.5 � 1.5 � 1.5 mm, modulated, and smoothed
using an isotropic Gaussian kernel (8-mm FWHM).

qCBF and qCBV maps were analyzed using the mass uni-
variate methodology of SPM8.1 Voxel-by-voxel t tests were
performed to identify focal differences in qCBF and qCBV
between cognitively impaired and nonimpaired patients.
Global normalization was achieved by proportional scaling of
the thresholded mean voxel value of every qCBF or qCBV map
to a common value. We reported significance using a voxel-
wise P value threshold (P � .05) corrected for multiple com-
parisons and an extent threshold of 20 contiguous voxels. The
correction methodology uses random field theory to control
the FWE rate, which represents the type I error rate in the
family of voxels as a whole.4 FWE-based correction is known
to be conservative, so the spatial extent of each significant
cluster was established using an uncorrected P value threshold
(P � .001).5 Extracranial voxels were excluded from analysis
with a whole-brain mask. Using the WFU Pick Atlas, Version
3.0, toolbox for SPM8, we classified every voxel in each signif-
icant cluster according to cytoarchitectonic, lobar, and hemi-
spheric location.6

Voxel-by-voxel t tests were also conducted to detect focal
differences in GM, WM, and WML tissue volume between
cognitively impaired and nonimpaired patients. Total intra-
cranial volume was included as a statistical covariate to assess
relative tissue volume. Global GM, WM, and WML volumes
(cubic millimeters) were calculated by thresholding the re-
spective tissue probability maps at .05. These values were nor-
malized to total intracranial volume. Such normalized tissue
volumes are more informative than absolute tissue volumes
because the normalization step negates head size as a possible
confounder. Normalized GM, WM, and WML volumes were
analyzed using the Wilcoxon rank sum test.

qCBF and qCBV maps were further analyzed with PLS
(Rotman Research Institute, Toronto, Ontario, Canada) using
a multivariate methodology.7 While SPM is designed to detect

spatially localized differences in mean voxel intensity (within
the context of the 2-group comparisons described above), PLS
is designed to detect spatially distributed patterns of interde-
pendency between voxel intensities and behavioral perfor-
mance (within the context of Behavior PLS). LVs were derived
from the correlation matrix of voxel and behavioral data by
singular value decomposition. Each LV is associated with a
singular value that is the covariance between voxel and behav-
ioral saliencies with more predictive LVs having higher singu-
lar values. Behavioral performance represented dichotomized
group membership (ie, impaired versus nonimpaired) for the
patient overall (ie, �2 test impairments), which is similar to
the 2-group SPM strategy, and for each cognitive test. Clinical
and radiologic data found to be significant were included as
“behavioral data,” which consequently included all predictive
variables.

The statistical significance of identified LVs was deter-
mined using permutation testing with 500 iterations.7 For
each permutation, PLS analysis was recalculated after ran-
domly exchanging labels on data points, which is sampling
without replacement. The frequency with which the permuted
singular values exceeded the observed singular value was used
to calculate the P value for the associated LV. The reliability
of voxel saliencies was assessed using bootstrap resampling
with 100 iterations.1 Voxels were considered reliable if the
ratio of their salience to standard error, which is referred to as
the bootstrap ratio, was �5. A bootstrap ratio � 5 approxi-
mately corresponds to P � .0001, which represents the lower
estimable limit of significance. Bootstrap ratio maps thresh-
olded at �5 with an extent threshold of 20 contiguous voxels
were used to identify significant clusters. Because image-wide
statistical analysis is performed in a single step, no multiple
comparison correction is necessary. The MNI space coordi-
nates of significant voxels were converted to Talairach space
using the icbm_spm2tal algorithm and then were classified
according to cytoarchitectonic, lobar, and hemispheric loca-
tions using the Talairach Daemon database (http://www.
talairach.org/daemon.html).8,9 Correlations were calculated
between predictive variables and the observed patterns of
qCBF and qCBV. The 95% confidence intervals not overlap-
ping zero indicated significant contribution to these patterns.
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