ON-LINE APPENDIX

MR Imaging Acquisition and Image Segmentation

MR Imaging Acquisition. An MPRAGE sequence was used to obtain T1-weighted images with TR/TE = 1540/2.34 ms, FOV = 256×256 mm, matrix = 256×256 , section thickness = 1 mm (with no gap), and section number = 176. T2-weighted images were acquired by using a fast spin-echo sequence with TR/TE = 2500/316 ms and the same resolution parameters as in T1-weighted images. For DTI, acquisition parameters were as follows: TR/TE = 8300/82 ms, b-value = 1000 s/mm^2 , diffusion gradient directions = 42, 7b=0 scans, FOV = 256×256 mm, matrix = 128×128 , section thickness = 2 mm (with no gap), and section number = 65. A multi-gradient-echo sequence was used to estimate the apparent transverse relaxation rate (1/T2*). Six echoes with TEs ranging from 7 to 47 ms with an equal interval of 8 ms were acquired with TR = 54 ms, flip angle = 20° , FOV = $256 \times 256 \times 256$

mm, matrix = 256×256 , section thickness = 1.5 mm (with no gap), and section number = 64.

Atlas-Based Segmentation. The ROIs were obtained by using the AutoSeg package. Namely, the T1WI and T2WI were corrected by using the N4 algorithm for intensity inhomogeneity within each subject. A rigid registration was applied to roughly align an individual T1WI with the T1WI template image. A T2WI was aligned with the template image by applying the same transformation. The expectation-maximization algorithm was used for brain segmentation and skull stripping. Finally, the symmetric image normalization (SyN) algorithm was used to coregister the template T1WI (skull-stripped) to individual T1WI (skull-stripped). The generated deformable transformation was then applied to an atlas image to bring the ROIs from the template space into the individual space. Segmentation results were overlapped on T1WI/T2WI and were visually checked for potential registration failures. No severe misalignment was detected.

On-line Table: MRI measurements (mean and SD) for controls and patients with PD, MSA-P, and PSPa

	Control	PD	MSA-P	PSP
PUT				
FA	0.332 (0.025)	0.339 (0.026)	0.325 (0.032)	0.333 (0.037)
MD	8.082 (0.633)	8.216 (0.738)	8.850 (1.376)	8.766 (0.957)
R2*	28.283 (3.572)	29.290 (5.441)	29.791 (4.124)	30.845 (6.133)
CN	,	,	,	(,
FA	0.244 (0.032)	0.245 (0.039)	0.241 (0.031)	0.251 (0.044)
MD	12.770 (1.594)	12.570 (2.239)	13.682 (2.822)	13.931 (2.316)
R2*	21.162 (3.051)	22.914 (3.532)	21.421 (4.714)	21.971 (4.332)
GP	(,		,	
FA	0.395 (0.040)	0.391 (0.037)	0.379 (0.052)	0.390 (0.045)
MD	8.551 (0.562)	8.448 (0.499)	9.316 (1.292)	9.182 (0.715)
R2*	36.372 (3.974)	37.473 (6.964)	39.908 (5.026)	39.456 (5.703)
antSN	30.57 2 (5.77 .)	371173 (0.501)	3717 30 (31023)	371.30 (31.73)
FA	0.503 (0.075)	0.478 (0.082)	0.443 (0.077)	0.467 (0.108)
MD	7.340 (1.346)	7.897 (2.037)	8.227 (1.561)	9.057 (2.836)
R2*	41.896 (8.800)	47.688 (12.372)	49.651 (12.790)	51.381 (18.258)
postSN	11.070 (0.000)	17.000 (12.57.2)	15.031 (12.75)	31.301 (10.230)
FA	0.466 (0.071)	0.407 (0.056)	0.417 (0.056)	0.434 (0.066)
MD	8.267 (0.781)	8.844 (1.043)	8.148 (1.232)	9.575 (1.257)
R2*	32.087 (4.926)	36.723 (9.573)	37.312 (9.571)	39.510 (9.785)
RN	32.007 (1.720)	30.7 23 (7.37 3)	37.312 (7.37.1)	37.310 (7.703)
FA	0.448 (0.058)	0.430 (0.063)	0.402 (0.055)	0.416 (0.061)
MD	8.426 (1.099)	8.748 (1.645)	9.528 (1.483)	9.708 (1.928)
R2*	28.876 (3.622)	32.509 (5.544)	30.359 (5.116)	33.340 (5.554)
STN	20.070 (3.022)	32.307 (3.311)	30.337 (3.110)	33.3 10 (3.33 1)
FA	0.516 (0.056)	0.495 (0.051)	0.465 (0.048)	0.490 (0.051)
MD	7.607 (1.075)	7.891 (1.251)	8.320 (1.475)	8.417 (1.409)
R2*	31.985 (5.710)	34.237 (5.030)	37.798 (5.268)	36.535 (4.875)
Hipp	31.963 (3.716)	31.237 (3.030)	37.75 (3.200)	30.333 (1.073)
FA	0.195 (0.016)	0.192 (0.020)	0.189 (0.019)	0.180 (0.015)
MD	12.348 (1.859)	12.247 (1.623)	12.275 (1.226)	14.694 (1.636)
R2*	19.304 (3.352)	19.172 (2.607)	18.478 (2.306)	17.082 (2.960)
AM	17.50 1 (5.552)	17.17 2 (2.007)	10.170 (2.300)	17.002 (2.700)
FA	0.208 (0.016)	0.201 (0.021)	0.197 (0.021)	0.194 (0.016)
MD	10.630 (0.912)	11.075 (1.432)	10.900 (0.846)	11.858 (1.405)
R2*	19.603 (4.226)	20.068 (3.100)	20.015 (5.454)	18.171 (3.803)
DN	17.005 (4.220)	20.000 (3.100)	20.013 (3.434)	10.17 1 (5.005)
FA	0.372 (0.029)	0.364 (0.037)	0.360 (0.048)	0.341 (0.084)
MD	7.657 (0.328)	7.744 (0.536)	7.942 (0.927)	8.429 (1.300)
R2*	25.995 (4.358)	25.745 (6.198)	24.023 (4.750)	27.732 (6.096)
СВ	25.575 (1.550)	23.7 13 (0.170)	21.023 (1.730)	27.732 (0.070)
FA	0.248 (0.032)	0.252 (0.023)	0.224 (0.039)	0.220 (0.027)
MD	8.013 (0.673)	8.029 (0.611)	9.516 (2.468)	9.415 (2.083)
R2*	19.633 (2.503)	19.791 (3.348)	18.412 (2.317)	19.220 (2.140)
SCP	17.033 (2.303)	17.771 (3.3.10)	10.112 (2.517)	17.220 (2.110)
FA	0.671 (0.123)	0.682 (0.124)	0.640 (0.153)	0.483 (0.201)
MD	10.635 (1.931)	10.752 (2.283)	12.274 (2.845)	14.408 (4.945)
R2*	18.466 (3.389)	19.713 (4.507)	16.899 (4.996)	17.898 (4.376)
MCP	10.100 (5.507)	15.715 (1.507)	10.077 (1.770)	17.070 (1.370)
FA	0.542 (0.032)	0.534 (0.062)	0.506 (0.056)	0.524 (0.084)
MD	7.322 (0.340)	7.151 (0.346)	8.009 (1.367)	7.881 (1.708)
R2*	20.481 (3.941)	21.934 (4.017)	19.580 (4.325)	19.617 (3.840)
11/2	20. 101 (3.741)	21.73 1 (4.017)	17.300 (4.323)	17.017 (5.040)

Note:—antSN indicates anterior substantia nigra; postSN, posterior substantia nigra; Hipp, hippocampus; AM, amygdala; CB, cerebellum; DN, dentate nucleus; GP, globus $pallidus; MCP, middle\ cerebellar\ peduncle; SCP, superior\ cerebellar\ peduncle.$

 $^{^{\}rm a}$ Data represent the mean (SD) of the imaging measures in each region for each group of subjects.

ON-LINE FIG 1. Illustration of ROIs in templates for segmentation. ROIs are illustrated in TI-weighted or T2-weighted template images. Hipp indicates hippocampus; AM, amygdala; GP, globus pallidus; SCP, superior cerebellar peduncle; MCP, middle cerebellar peduncle; antSN, anterior SN; postSN, posterior SN; CB, cerebellum; DN, dentate nucleus.

ON-LINE FIG 2. ROC curves for differentiating controls and patients with parkinsonian syndromes by using MR imaging measurements. The *green line* represents the model with DTI measurements alone, the *red line* represents the model by using the R2* measurement alone, and the *blue line* represents the model by using both R2* and DTI measurements. The ROC curves were generated by using a nested 10-fold cross-validation.

 $\mbox{\bf ON-LINE FIG 3.}$ An example of the final segmentation quality for small structures (SN, RN, and superior cerebellar peduncle).