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Supplemental Methods 
 
Neural Network Details 
An attention-gated U-Net architecture was implemented in this study (Figure I)1, 2. We 
combined the traditional U-Net architecture with attention gates3 to focus on target areas in the 
images. This was achieved by combining contextual information from output of previous layers 
(coarser scales) and symmetric encoding layers. A “2.5D” model was used in this study to 
balance the computational efficiency and 3D image information. “2.5D” means that five 
consecutive slices of DWI, ADC, Tmax, MTT, CBF, CBV, and masks of Tmax and ADC were 
used to predict the probability of infarct on the center slice. The ground truth was a binary mask 
of final infarct lesion of the middle slice. Image mirroring around the midline was used to 
augment the training data size. The output of the model is a probability map with voxel values 
that ranged from 0 to 1. A value close to 1 indicates the voxel is more likely to be infarcted, 
while a value close to 0 indicates the voxel is likely to be spared. 
 
The model was trained with the ADAM optimizer (learning rate 0.0005) using a batch size of 
16 and 120 epochs. 50% dropout was implemented to prevent overfitting in both encoding and 
decoding layers4. We used a mixed loss function of weighted binary cross-entropy, mean 
absolute error (L1 loss), Dice score coefficient (DSC), and volume loss as described below:  
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p is the predicted probability. y is the ground truth value of that voxel (0 = not infarcted, 1 = 
infarcted). N is the total number of voxels. Since stroke lesions are only present in relatively a 
small fraction of all brain voxels, weighting was applied to balance the numbers of positive 
and negative voxels. The weights were calculated based on the ratio of the positive and negative 
voxels of each training batch:  
 

R0 = "
34
35

6"
 

R1 = 1 – R0 
 
where N- and N+ represent the number of negative and positive voxels per batch, respectively. 
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NTP, NFP, and NFN are the number of true positive, false positive, and false negative voxels, 



respectively. The volume loss was added to counter possible volumetric bias introduced by 
DSC loss5. 
 
The loss function was then expressed as: 
 

Loss = Weighted binary cross entropy + L1 loss + 0.5×(1 – DSC) + 0.5×Volume loss 
 
The weight of 0.5 was given to DSC and volume loss to adjust them to a similar scale as the 
weighted binary cross entropy and L1 loss. 
 
The implementation was based on Keras (version 2.2.2) with Tensorflow (version 1.10.0) 
backend. All tests were conducted on a workstation equipped with Quadro GV100 and Tesla 
V100-PCIE graphical processing units (Nvidia, Santa Clara, CA, USA).  
  



Supplemental Tables 
Table I. Prediction performance of pretraining, separate and thresholding approach. 
 Minimal reperfusion (n=33) Major reperfusion (n=67) 
 Volume 

difference, % 
Absolute volume 
difference, % 

Volume 
difference, % 

Absolute volume 
difference, % 

Pre-training 
approach 

16 (-23-105) 42 (21-105) 0 (-44-81) 51 (18-89) 

Separate 
approach 

27 (-32-151) 51 (30-151) 2 (-35-125) 57 (18-125) 

p-value .4 .3 .007 .02 
Thresholding 
approach 

9 (-32-92) 38 (22-92) -33 (-68-36）  60 (33-103) 

p-value .8 .2 <.001 .3 
Data are expressed as median (interquartile range). Percentage are calculated by volume 
difference / true volume. 
Paired comparisons were made between pretraining and separate approach, and pretraining 
and thresholding approach. 
In minimal reperfusion patients, the thresholding approach used the union of Tmax > 6 sec 
and ADC < 620 x 10-6 mm2/s; in major reperfusion patients, the thresholding approach used 
the ADC < 620 x 10-6 mm2/s. 

 
 
  



Supplemental Figures and Figure Legends 
Figure I. The block diagram of the attention-gated U-Net model and the schematic of the 
attention gate.  

 
Input images included 5 consecutive slices of diffusion-weighted imaging (b=1000 s/mm2), 
apparent diffusion coefficient and its mask with a threshold of less than 620×10−6 mm2/s, Tmax 
and its mask with a threshold of more than 6 sec, mean transit time, cerebral blood flow, and 
cerebral blood volume maps. The number of channels is denoted on the top of the box. The 
skip connections allow high-resolution features to be maintained during training. In an 
attention gate, the output of previous layer (g) and the symmetric encoding layer (xl) undergo 
convolution (with 1-by-1 kernel), summation, and ReLU activation. Then another convolution 
with sigmoid activation is applied to the extract attention coefficient (a), which is then 
multiplied with the skip connection. 
 
Figure II. Attention map output from the attention gate at each level of the U-net. 

 
The first attention map locates right after the bottle neck with a size of 32 x 32. The third 
attention map locates before the model output with a size of 128 x 128.   
  



Figure III. Volume predictions from the pre-training, separate, and thresholding approaches.  

 
In both minimal (A,C,E) and major (B,D,F) reperfusion patients, the pre-training approach had 
the best fit and less variation than either the separate or thresholding approach. (F) Note that 
ADC thresholding erroneously predicted zero lesion size (circled with dashed grey line) more 
commonly than the deep learning model (13 vs. 0 patients, respectively). 
  



Figure IV. Two representative cases of predictions from the pre-training, separate, and 
thresholding approaches. 

 
(Top) 71 year-old male treated with IV tPA only, which achieved 0% reperfusion. Of note, 
only voxels with both diffusion and perfusion information are included in the model. His true 
lesion is used to define tissue-at-risk. (Bottom) 45 year-old male treated with IV tPA and 
thrombectomy, which achieved 100% reperfusion. His true lesion is used to define ischemic 
core. The pre-training approach had more accurate prediction than either the separate 
approach and thresholding method both visually, with DSC analysis, and volumetrically. 
Green areas overlayed on the FLAIR image represents true positive, Blue represents false 
negative, and red represents false positive.  



Figure V. Example of how the deep learning models would be used for triage compared with 
the thresholding method.  

 
(Top) a 44 year-old female with large mismatch between tissue-at-risk and ischemic core 
prediction (mismatch ratio of 11.8), indicating a small stroke if the patient received successful 
treatment or a much larger stroke if the patient did not receive any treatment. She received IV 
tPA bridging with thrombectomy which achieved 24 hr reperfusion rate of 100%. At 90 days, 
the patient had full recover with mRS of 0. However, (Bottom) another 44 year-old female with 
small mismatch ratio of 1.4, indicating limited tissue salvage despite successful treatment. She 
received the same treatment but only achieved 24 hr reperfusion rate of 10% and had 
moderately severe disability with mRS of 4 at 3 months.  
 
This illustrates how estimated tissue outcome (with and without reperfusion) can be obtained 
from the deep learning approach and facilitate clinical decision making on whether to treat the 
patient. Green areas overlayed on the FLAIR image represents true positive, Blue represents 
false negative, and red represents false positive. 
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