Skip to main content

Why Does Cerebral Cortex Fissure and Fold?

A Review of Determinants of Gyri and Sulci

  • Chapter
Book cover Cerebral Cortex

Part of the book series: Cerebral Cortex ((CECO,volume 8B))

Abstract

The most striking, interesting, yet poorly understood gross morphological features of the cerebral hemispheres in mammals are the diverse and complex arrangements of their cortical gyri and sulci (Fig. 1). Among mammals, the spinal cord and brain-stem nuclei are morphologically quite similar, despite variations in size. However, during evolution, the cerebrum and cerebellum have undergone marked variations in size, shape, and convolutional complexity (Fig. 2). External morphological features of mammalian brains have long been utilized to judge not only the degree of phylogenetic development, but also the nature and level of complexity of brain functions. The great variety of living mammals exhibit a corresponding variety of brain shapes, sizes, and patterns of fissuration and convolution of the cerebral neocortex. The view has consistently been expressed that animals with brains having greater amounts of convoluted cerebral neocortex were more intelligent as well as perceptually and behaviorally more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbie, A. A., 1947, Headform and human evolution, J. Anat. 81: 233–259.

    Article  PubMed  CAS  Google Scholar 

  • Ackerknecht, E. H., and Vallois, H. V., 1956, Franz Joseph Gall, Inventor of Phrenology and His Collection, University of Wisconsin Medical School, Madison.

    Google Scholar 

  • Adams, J. H., Corsellis, J. A. N., and Duchen, L. W. (eds.), 1984, Greenfield’s Neuropathology, 4th ed., Wiley, New York.

    Google Scholar 

  • Aherne, W. A., and Dunhill, M. S. 1982, Morphometry, Arnold, London.

    Google Scholar 

  • Akert, K., 1964, Comparative anatomy of frontal cortex and thalamocortical connections, in: The Frontal Granular Cortex and Behavior ( J. M. Warren and K. Akert, eds.), McGraw-Hill, New York, pp. 372–396.

    Google Scholar 

  • Alderson, A. M., Diamantopoulos, E., and Downman, C. B. B., 1960, Auditory cortex of the seal (Phoca vitulina), J. Anat. 94: 506–511.

    PubMed  CAS  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1971, Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus), Brain Res. 35: 89–106.

    Article  PubMed  CAS  Google Scholar 

  • Anker, M. V., Millsap, M., and Magoun, H. W., 1987, Felice Fontana’s wax figures of the cortical convolutions, FASEB J. 1: 506.

    Google Scholar 

  • Ariëns Kappers, C. U., 1913, Cerebral localisation and the significance of sulci, Anat. Embryol. (XVIIth Int. Congr. Med. London Sect. I) 273–392.

    Google Scholar 

  • Ariëns Kappers, C. U., 1932, On some correlations between skull and brain, Philos. Trans. R. Soc. London 221: 391–429.

    Article  Google Scholar 

  • Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates Including man, Macmillan Co., New York.

    Google Scholar 

  • Armstrong, E., 1982a, A look at relative brain size in mammals, Neurosci. Lett. 34: 101–104.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, E., 1982b, Mosaic evolution in the primate brain: Differences and similarities in the hominoid thalamus, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 131–161.

    Chapter  Google Scholar 

  • Armstrong, E., 1983, Relative brain size and metabolism in mammals, Science 220: 1302–1304.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, E., 1985, Allometric considerations of the adult mammalian brain, with special emphasis on primates, in: Size and Scaling in Primate Biology ( W. L. Jungers, ed.), Plenum Press, New York, pp. 115–146.

    Google Scholar 

  • Armstrong, E., and Falk, D. (eds.), 1982, Primate Brain Evolution: Methods and Concepts, Plenum Press, New York.

    Google Scholar 

  • Armstrong-James, M., and Fox, K., 1988, The physiology of developing cortical neurons, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 237–272.

    Chapter  Google Scholar 

  • Asanuma, H., and Fernandez, J., 1974, Characteristics of projections from the nucleus ventralis lateralis to the motor cortex in the cats: An anatomical and physiological study, Exp. Brain Res. 20: 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Avendano, C., and Llamas, A., 1984, Thalamic and nonthalamic direct subcortical projections to association areas of the cat’s cerebral cortex, in: Cortical Integration ( F. Reinosa-Suárez and C. Ajmone-Marsan, eds.), Raven Press, New York, pp. 195–221.

    Google Scholar 

  • Bagley, C., Jr., 1922, Cortical motor mechanism of sheep brain, Arch. Neurol. Psychiatry 7: 417–453.

    Article  Google Scholar 

  • Bailey, P., and Bonin, G. von, 1951, The Isocortex of Man, University of Illinois Press, Urbana.

    Google Scholar 

  • Bailey, P., Bonin, G. von, and McCulloch, W. S., 1950, The Isocortex of the Chimpanzee, University of Illinois Press, Urbana.

    Google Scholar 

  • Baillarger, J. G. F., 1853, De l’etendue de la surface du cerveau et de ses rapports avec le dévelopment de l’intelligence, Ann. Med. Psych. (Ser. 2) 5: 1–9.

    Google Scholar 

  • Barker, D. J., and Welker, W. I., 1969, Receptive fields of first-order somatic sensory neurons innervating rhinarium in coati and raccoon, Brain Res. 14: 367–386.

    Article  PubMed  CAS  Google Scholar 

  • Barron, D. H., 1950, An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex, J. Exp. Zool. 113: 553–573.

    Article  Google Scholar 

  • Bauchot, R., 1978, Encephalization in vertebrates. A new mode of calculation for allometry coefficients and isoponderal indices, Brain Behav. Evol. 15: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Bauchot, R., 1982, Brain organization and taxonomic relationships in Insectívora and primates, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 163–175.

    Chapter  Google Scholar 

  • Bay, E., 1964, The history of aphasia and the principles of cerebral localization, in: Cerebral Localization and Organization ( G. Schaltenbrand and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 43–65.

    Google Scholar 

  • Beddard, F. E., 1899, A contribution to our knowledge of the cerebral convolutions of the gorilla, Proc. Zool. Soc. London 5: 65–76.

    Google Scholar 

  • Berson, D. M., and Graybiel, A. M. 1983, Subsystems within the visual association cortex as delineated by their thalamic and transcortical affiliations, in: Molecular and Cellular Interactions Underlying Brain Functions ( J.-P Changeux, J. Glowinski, M. Imbert, and F. E. Bloom, eds.), Elsevier, Amsterdam, pp. 229–238.

    Google Scholar 

  • Biegert, J., 1957, Der Formvandel des Primatenschädels und seine Beziehungen zur ontogenetischen

    Google Scholar 

  • Entwicklung und den phylogenetischen Spezialisation der Kopforgane, Gegenbauers Morphol. Jahrb. 98:77–199.

    Google Scholar 

  • Bielschowsky, M., 1915, Über Mikrogyrie, J. Psychol Neurol 22: 1–83.

    Google Scholar 

  • Bielschowsky, M., 1923, Über die oberflächengastaltung des Grosshirnmantels bei Pachygyrie, Mikrogyrie und bei normaler Entwicklung, J. Psychol Neurol 30: 29–76.

    Google Scholar 

  • Bischoff, T. L. W., 1870, Die Grosshirnwindungen des Menschen mit Berücksichtigung ihrer Entwicklung bei dem Foetus und ihrer Anordnung bei den Affen, Abh. Math. Phys. Kl Bayer. Akad. Wiss. 2: 389–499.

    Google Scholar 

  • Black, D., 1913, The study of an atypical cerebral cortex, J. Comp. Neurol. 23: 351–369.

    Article  Google Scholar 

  • Black, D., 1915a, A note on the sulcus lunatus in man, J. Comp. Neurol. 25: 129–134.

    Article  Google Scholar 

  • Black, D., 1915b, A study of the endocranial casts of Ocapia, Giraffa and Samotherium, with special reference to the convolutional pattern in the family of Giraffidae, J. Comp. Neurol 25: 329 - 360.

    Article  Google Scholar 

  • Blackwood, W., and Corsellis, J. A. N. (eds.), 1976, Greenfield’s Neuropathology, 3rd ed., Arnold,

    Google Scholar 

  • London.

    Google Scholar 

  • Bock, W. J., 1969, Discussion: The concept of homology, Ann. N.Y. Acad. Sci. 167: 71–73.

    Article  Google Scholar 

  • Bohringer, R. C., and Rowe, M. J., 1977, The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus), J. Comp. Neurol. 174: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Bok, S. T., 1929, Der Einfluss der in den Furchen und Windungen auftretenden Krümmungen der Grosshirnrinde auf die Rindenarchitecktur, Z. Gesamte Neurol. Psychiatr. 121: 682–750.

    Article  Google Scholar 

  • Bok, S. T., 1959, Histonomy of the Cerebral Cortex, Elsevier, Amsterdam.

    Google Scholar 

  • Bok, S. T., 1960, Quantitative analysis of the morphological elements of the cerebral cortex, in: Structure and Function of the Cerebral Cortex (D. B. Tower and J. P. Schade, eds.), Elsevier, Amsterdam, pp. 7–17. Bok, S. T., and van Erp Taalman Kip, M. J., 1939, The size of the body and the size and the number of nerve cells in the cerebral cortex, Acta Neerl. Morphol. 3: 1–22.

    Google Scholar 

  • Bolk, L., Goppert, E., Kallius, E., and Lubosch, W., 1934, Handbuch der Vergleichende Anatomie der Wirbeltiere, Urban & Schwarzenberg, Munich.

    Google Scholar 

  • Bonin, G. von, 1934, On the size of man’s brain as indicated by skull capacity, J. Comp. Neurol 59: 1–28.

    Article  Google Scholar 

  • Bonin, G. von, 1941a, On encephalometry, J. Comp. Neurol 75: 287–314.

    Article  Google Scholar 

  • Bonin, G. von, 1941b, Side lights on cerebral evolution: Brain size of lower vertebrates and degree of cortical folding, J. Gen. Psychol. 25: 273–282.

    Article  Google Scholar 

  • Bonin, G. von, 1944, Architecture of the precentrai motor cortex and some adjacent areas, in: The Precentrai Motor Cortex ( P. C. Bucy, ed.), University of Illinois Press, Urbana, pp 7–82.

    Google Scholar 

  • Bonin, G. von, 1963 (Midway reprint, 1970), The Evolution of the Human Brain, University of Chicago Press, Chicago.

    Google Scholar 

  • Braak, H., 1978, On the pigmentarchitectonics of the human telencephalic cortex, in: Architectonics of the Cerebral Cortex ( M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 137–157.

    Google Scholar 

  • Braak, H., 1984, Architectonics as seen by lipofuscin stains, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 59–106.

    Google Scholar 

  • Bradley, O. C., 1899, The convolutions of the cerebrum of the horse. Part I, J. Anat. Physiol 33: 215–227.

    PubMed  CAS  Google Scholar 

  • Braendgaard, H., and Gundersen, H. J. G., 1986, The impact of recent stereological advances on

    Google Scholar 

  • quantitative studies of the nervous system, J. Neurosci. Methods 18:39–78.

    Google Scholar 

  • Braitenberg, V., 1962, A note on myeloarchitectonics, J. Comp. Neurol. 110: 141–156.

    Article  Google Scholar 

  • Braitenberg, V., 1974, Thoughts on the cerebral cortex, J. Theor. Biol. 46: 421–447.

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg, V., 1978, Cortical architectonics: General and areal, in: Architectonics of the Cerebral Cortex ( M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 443–466.

    Google Scholar 

  • Brandt, A., 1867, Sur 1e rapport du poids du cerveau à celui du corps chez differénts animaux, Bull. Soc. Imp. Nat. Moscou 40: 525–543.

    Google Scholar 

  • Brauer, K., and Schober, W., 1970, Catalogue of Mammalian Brains, Fischer, Jena.

    Google Scholar 

  • Brazier, M. A. B., 1978, Architectonics of the cerebral cortex: Research in the 19th century, in: Architectonics of the Cerebral Cortex ( M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 9–30.

    Google Scholar 

  • Brazier, M. A. B., and Petsche, H. (Eds.), 1978, Architectonics of the Cerebral Cortex Raven Press, New York,

    Google Scholar 

  • Broca, P., 1878a, Anatomie comparée des circonvolutions cérébrales. Le Grand Lobe Limbique et la scissure limbique dans la serie des Mammiferes, Rev. Anthropol. 1: 385–498.

    Google Scholar 

  • Broca, P., 1878b, Nomenclature cérébrale. Dénomination des divisions et subdivisions des hémisphéres et des anfractuosités de leur surface, Rev. Anthropol 1: 193–236.

    Google Scholar 

  • Brodmann, K., 1909, Vergleichende Localizationslehre der Grosshirnrinde, Barth, Leipzig.

    Google Scholar 

  • Bruce, A., 1889, On the absence of the corpus callosum in the human brain, with the description of a new case, Brain 12: 171–190.

    Article  Google Scholar 

  • Brugge, J. F., and Reale, R. A., 1985, Auditory cortex, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 229–271.

    Google Scholar 

  • Brun, A., 1965, The subpial granular layer of the foetal cerebral cortex in man. Its ontogeny and significance in congenital cortical malformations, Acta Pathol. Microbiol. Scand. Suppl. 179: 1–88.

    Google Scholar 

  • Buchwald, N. A., and Brazier, M. A. B. (eds.), 1975, Brain Mechanisms in Mental Retardation, Academic Press, New York.

    Google Scholar 

  • Bullock, T. H., 1983, Epilogue: Neurobiological roots and neuroethological spouts, in: Neuroethology and Behavioral Physiology ( F. Huber and H. Markl, eds.), Springer, Berlin, pp. 403–412.

    Chapter  Google Scholar 

  • Burton, H., 1986, Second somatosensory cortex and related areas, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 31–98.

    Google Scholar 

  • Burton, H., and Jones, E. G., 1976, The posterior thalamic region and its cortical projection in New World and Old World monkeys, J. Comp. Neurol. 168: 249–302.

    Article  PubMed  CAS  Google Scholar 

  • Calder, W. A., III, 1984, Size, Function, and Life History, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Cameron, J., 1907, A brain with complete absence of the corpus callosum, J. Anat. 41: 293–301.

    CAS  Google Scholar 

  • Camosso, M. E., Ambrosi, G., and Roncali, L., 1980, Correlations between developmental patterns of CNS vascular and nervous components, in: Multidisciplinary Approach to Brain Development ( C. Di Benedetta, R. Balázs, G. Gombos, and G. Porcellati, eds.), Elsevier/North-HoUand, Amsterdam, pp. 107–108.

    Google Scholar 

  • Campbell, A. W., 1905, Histological Studies on the Localisation of Cerebral Function, Cambridge University Press, London.

    Google Scholar 

  • Campbell, C. B. G., 1976a, Morphological homology and the nervous system, in: Evolution, Brain, and Behavior: Persistent Problems ( R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 143–151.

    Google Scholar 

  • Campbell, C. B. G., 1976b, What animals should we compare? in: Evolution, Brain, and Behavior: Persistent Problems ( R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 107–113.

    Google Scholar 

  • Campbell, C. B. G., 1982, Some questions and problems related to homology, in Primate Brain Evolution: Methods and Concepts (E. Armstrong and D. Falk, eds,), Plenum Press, New York, pp. 1–11.

    Google Scholar 

  • Campbell, C. B. G., and Hodos, W, 1970, The concept of homology and the evolution of the nervous system, Brain Behau Evol. 3: 353–367.

    Article  CAS  Google Scholar 

  • Campos, G. B., and Welker, W. I., 1976, Comparisons between brains of a large and a small hystricomorph rodent: capybara, Hydrochoerus and guinea pig, Cavia; Neocortical projection regions and measurements of brain subdivisions, Brain Behau Evol. 13: 243–266.

    Article  CAS  Google Scholar 

  • Carlson, M., 1985, Significance of single or multiple cortical areas for tactile discrimination in primates, in: Hand Function and the Neocortex ( A. W. Goodwin and I. Darian-Smith, eds.), Springer, Berlin, pp. 1–16.

    Chapter  Google Scholar 

  • Carlson, M., and Welker, W. I., 1976, Some morphological, physiological and behavioral specializations in North American beavers (Castor canadensis), Brain Behau Evol. 13: 302–326.

    Article  CAS  Google Scholar 

  • Carlson, M., and Welt, C., 1981, The somatic sensory cortex: Sm I in prosimian primates, in: Cortical Sensory Organization, Volume 1 ( C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 1–27.

    Chapter  Google Scholar 

  • Castle, W. E., 1932, Body size and body proportions in relation to growth rates and natural selection, Science 76: 365–366.

    Article  PubMed  CAS  Google Scholar 

  • Caviness, V. S., Jr., and Williams, R. S., 1979, Cellular pathology of developing human cortex, in: Congenital and Acquired Cognitive Disorders ( R. Katzman, ed.), Raven Press, New York, pp. 69–89.

    Google Scholar 

  • Caviness, V. S., Jr., Crandall, J. E., and Edwards, M. A., 1988, The reeler malformation. Implications for neocortical histogenesis, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 59–89.

    Chapter  Google Scholar 

  • Chi, J. G., Dooling, E. C., and Gilles, F. H., 1977, Gyral development of the human brain, Ann. Neurol. 1: 86–93.

    Article  PubMed  CAS  Google Scholar 

  • Chi, T. K., and Chang, C., 1941, The sulcal pattern of the Chinese brain, Am. J. Phys. Anthropol. 28: 167–211.

    Article  Google Scholar 

  • Chow, K. L., and Leiman, A. L., 1970, The structural and functional organization of the neocortex. A report based on an NRP work session, Neurosci. Res. Progr. Bull. 8: 153–220.

    Google Scholar 

  • Clark, W. E. L., 1945, Deformation patterns in the cerebral cortex, in: Essays on Growth and Form: Presented to D. W. Thompson ( W. E. L. Clark and P. B. Medawar, eds.), Oxford University Press (Clarendon), London, pp. 1–23.

    Google Scholar 

  • Clark, W. E. L., and Medawar, P. B., 1945, Essays on Growth and Form: Presented to D’Arcy Wentworth Thompson, Oxford University Press ( Clarendon ), London.

    Google Scholar 

  • Clark, W. E. L., Cooper, D. M., and Zuckerman, S. 1936, The endocranial cast of the chimpanzee, J. R. Anthropol. Inst. Great Britain Ireland 66: 249–268.

    Article  Google Scholar 

  • Clarke, E., and Dewhurst, K., 1972, An Illustrated History of Brain Function, University of California Press, Los Angeles.

    Google Scholar 

  • Clarke, E., and O’Malley, C. D., 1968, The Human Brain and Spinal Cord: A Historical Study Illustrated by Writings from Antiquity to the Twentieth Century, University of California Press, Berkeley.

    Google Scholar 

  • Clemente, C. D. (ed.), 1985, Anatomy of the Human Body by Henry Gray, 30th Am. ed., Lea & Febiger, Philadelphia.

    Google Scholar 

  • Clemente, C. D., and Marshall, L. H., 1987, Experimental and clinical studies of the cortical convolutions, FASEB J. (Abstr.) 1: 506.

    Google Scholar 

  • Cohen, M. J., and Strumwasser, F. (eds.), 1985, Comparative neurobiology: Modes of Communication in the Nervous System, Wiley, New York.

    Google Scholar 

  • Cole, F. J., 1944, A History of Comparative Anatomy, Macmillan & Co., London.

    Google Scholar 

  • Cole, F. J., 1911, Remarks on some points in the fissuration of the cerebrum, J. Anat. 46: 54–68.

    CAS  Google Scholar 

  • Colonnier, M. L., 1966, The structural design of the neocortex, in: Brain and Conscious Experience ( J. C. Eccles, ed.), Springer, Berlin, pp. 1–23.

    Google Scholar 

  • Colonnier, M. L., and Rossignol, S., 1969, Heterogeneity of the cerebral cortex, in: Basic Mechanisms of the Epilepsies ( H. H. Jasper, A. A. Ward, and A. Pope, eds.), Little, Brown, Boston, pp. 29–40.

    Google Scholar 

  • Connolly, C. J., 1967, Development of the cerebral sulci, Am. J. Phys. Anthropol. 26: 113–149.

    Article  Google Scholar 

  • Connolly, C. J., 1936, The fissurai pattern of the primate brain, Am. J. Phys. Anthropol. 21: 301–422.

    Article  Google Scholar 

  • Connolly, C. J., 1950, External Morphology of the Primate Brain, Thomas, Springfield, 111.

    Google Scholar 

  • Constantine-Paton, M., 1983, Position and proximity in the development of maps and stripes, Trends Neurosci. 6, 32–36.

    Article  Google Scholar 

  • Count, E. W, 1947, Brain and body weight in man: Their antecedents in growth and evolution, Ann. N.Y. Acad. Sci. 46: 993–1122.

    Article  Google Scholar 

  • Courville, C. B., 1971, Birth and Brain Damage: An Investigation into the Problems of Antenatal and Paranatal Anoxia and Allied Disorders and Their Relation to the Many Lesion-Complexes Residual Thereto, Margaret Farnsworth Courville, Pasadena, Calif.

    Google Scholar 

  • Cowan, W. M., 1979, The development of the brain, in: The Brain (A Scientific American Book), Freeman, San Francisco, pp. 56–67.

    Google Scholar 

  • Cowey, A., 1981, Why are there so many visual areas? in: The Organization of the Cerebral Cortex: Proceedings of a Neurosciences Research Program Colloquium ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 395–413.

    Google Scholar 

  • Crawford, M. L. J., 1985, Stimulus-specific columns in monkey visual cortex as revealed by the [14C]-2-deoxyglucose method, in: Cerebral Cortex, Volume 3 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 331–349.

    Google Scholar 

  • Creutzfeldt, O., 1975, Some problems of cortical organization in the light of ideas of the classical hirnpathologie and of modern neurophysiology. An essay, in: Cerebral Localization: An Otfrid Foerster Symposium ( K. J. Zulch, O. Creutzfeldt, and G. C. Galbraith, eds.), Springer, Berlin, pp. 217–226.

    Google Scholar 

  • Creutzfeldt, O., 1976a, Thematic introduction: Definition and comparison of principles of functional organization of laminated structures in the brain, in: Afferent and Intrinsic Organization of Laminated Structures in the Brain ( O. Creutzfeldt, ed.), Springer, Berlin, pp. xii–xxiii.

    Chapter  Google Scholar 

  • Creutzfeldt, O. (ed), 1976b, Afferent and Intrinsic Organization of Laminated Structures in the Brain, Exp. Brain Res. Suppl. 1.

    Google Scholar 

  • Cunningham, D. J., 1890a, The complete fissures of the human cerebrum, and their significance in connection with the growth of the hemisphere and the appearance of the occipital lobe, J. Anat. Physiol. 24: 309–345.

    PubMed  CAS  Google Scholar 

  • Cunningham, D. J., 1890c, On cerebral anatomy, Br. Med. J. (Clin. Res.) 2: 277–283.

    Article  CAS  Google Scholar 

  • Cunningham, D. J., 1892, Contribution to the surface anatomy of the cerebral hemispheres, R. Ir. Acad. Sci. (Cunningham Mem.) 7.

    Google Scholar 

  • Dareste, C., 1852, Memoire sur les circonvolutions du Cerveau chez les mammiferes, Ann. Sci. Nat. 3 eme Ser. Zool. 17: 34–54.

    Google Scholar 

  • Darlington, D., 1957, The convolutional pattern of the brain and endocranial cast in the ferret (Mustela furo L.), J. Anat. 91: 52–60.

    PubMed  CAS  Google Scholar 

  • de Beer, G. R., 1937, The Development of the Vertebrate Skull, Oxford University Press, London,

    Google Scholar 

  • de Beer, G. R., 1948, The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study, Proc. R. Soc. London (Biol.) 135: 342–258.

    Google Scholar 

  • de Groot, D. M. G., and Bierman, E. P. B., 1986, A critical evaluation of methods for estimating the numerical density of synapses, J. Neurosci. Methods 18: 79–103.

    Article  PubMed  Google Scholar 

  • de Lacoste, M.-C, Horvath, D. S., and Woodward, D. J., 1988, Prosencephalic asymmetries in Lemuridae, Brain Behau Evol. 31: 296–311.

    Article  Google Scholar 

  • Dellmann, H. D., and McClure, R. C., 1975, Nervous system. Central, in: Sisson and Grossman’s The Anatomy of the Domestic Animal, 5th ed. ( R. Getty, ed.), Saunders, Philadelphia, pp. 633–650.

    Google Scholar 

  • Diamond, I. T., and Hall, W. C., 1969, Evolution of neocortex, Science 164: 251–262.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, I. T., Fitzpatrick, D., and Sprague, J. M. 1985, The extrastriate visual cortex: A historical approach to the relation between the “visuo-sensory” and “visuo-psychic” areas, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 63–87.

    Google Scholar 

  • Diamond, M. C., Law, F., Rhodes, H., Lindner, B., Rosenzweig, D. K., and Bennett, E. L., 1966, Increases in cortical depth and glia numbers in rats subjected to enriched environment, J. Comp. Neurol. 128: 117–125.

    Article  PubMed  CAS  Google Scholar 

  • Di Benedetta, C., Balázs, R., Gombos, G., and Porcellati, G., 1980, Multidisciplinary Approach to Brain Development, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Dillon, L. S., 1963, Comparative studies of the brain in the Macropodidae. Contributions to the phylogeny of the mammalian brain. II, J. Comp. Neurol. 120: 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Dimond, S. J., and Blizard, D. A. (eds.), 1977, Evolution and Lateralization of the Brain, Ann. N.Y. Acad. Sci. 299.

    Google Scholar 

  • Dodgson, M. C. H., 1962, The Growing Brain: An Essay in Developmental Neurology, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Donaldson, H. H., 1895, The Growth of the Brain, Scribner’s, New York.

    Google Scholar 

  • Donaldson, H. H., 1928, A study of the brains of three scholars: Granville Stanley Hall, Sir William Osler, Edward Sylvester Morse, J. Comp. Neurol. 46: 1–95.

    Article  Google Scholar 

  • Douglas-Crawford, D., 1906, A case of absence of the corpus callosum, J. Anat. Physiol. 40: 57–64.

    Google Scholar 

  • Downman, C. B. B., Woolsey, C. N., and Lende, R. A., 1960, Auditory areas I, II and Ep: Cochlear representation, afferent paths and interconnections, Bull. Johns Hopkins Hosp. 106: 127–142.

    PubMed  CAS  Google Scholar 

  • Dubois, E., 1920, The quantitative relations of the nervous system determined by the mechanism of the neuron, Proc. K. Ned. Akad. Wet. 22: 665–680.

    Google Scholar 

  • Dubois, E., 1928, The law of necessary phylogenetic perfection of the psychencephalon, Proc. K. Ned. Akad. Wet. 31: 304–314.

    Google Scholar 

  • Dubois, E., 1930, Die phylogenetische Grosshirnzunahme autonome Vervollkommnung der animalen Functionen, Biol. Gen. 6: 247–292.

    Google Scholar 

  • DuBrul, E. L., 1958, Evolution of the Speech Apparatus, Thomas, Springfield, 111.

    Google Scholar 

  • DuBrul, E. L., and Laskin, D. M., 1961, Preadaptive potentialities of the mammalian skull: An experiment in growth and form, Am. J. Anat. 109: 117–132.

    Article  PubMed  CAS  Google Scholar 

  • Dvořák, K., Feit, J., and Juránková, Z., 1978, Experimentally induced focal microgyria and status verrucosus deformis in rats-Pathogenesis and interrelation. Histological and autoradiograph-ical study, Acta Neuropathol. 44: 121–129.

    Article  PubMed  Google Scholar 

  • Ebbesson, S. O. E., 1984, Evolution and ontogeny of neural circuits, Behau Brain Sci. 7: 321–366.

    Article  Google Scholar 

  • Ebner, F. F., 1967, Afferent connections to neocortex in the opossum (Didelphis virginiana), J. Comp. Neurol. 129: 241–268.

    Article  PubMed  CAS  Google Scholar 

  • Ebner, F. F., 1969, A comparison of primate forebrain organization in metatherian and eutherian mammals, Ann. N.Y. Acad. Sci. 167: 241–257.

    Article  Google Scholar 

  • Ebner, F. F., and Myers, R. E., 1962, Commissural connections in the neocortex of monkey, Anat. Ree. 142: 299.

    Google Scholar 

  • Ebner, F. F., and Myers, R. E., 1965, Distribution of corpus callosum and anterior commissure in cat and raccoon, J. Comp. Neurol. 124: 353–365.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1984, The cerebral neocortex: A theory of its operation, in: Cerebral Cortex, Volume 2 ( E. G.Jones and A. Peters, eds.), Plenum Press, New York, pp. 1–36.

    Chapter  Google Scholar 

  • Ecker, A., 1873, The Convolutions of the Human Brain (translated from German 1869 text), Galton, London.

    Google Scholar 

  • Economo, C. von, 1927, L’Architecture Cellulaire Normale de L’Écorce Cérébrale ( French edition translated by L. van Bogasert ), Masson, Paris.

    Google Scholar 

  • Economo, C. von, 1930, Cytoarchitectony and progressive cerebration, Psychiatr. Q. 4: 142–150.

    Article  Google Scholar 

  • Economo, C. von, and Koskinas, G. N., 1925, Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen, Springer, Berlin.

    Google Scholar 

  • Edelman, G. M., 1986, Cell adhesion molecules in the regulation of animal form and tissue pattern, Annu. Rev. Cell Biol. 2: 81–116.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G. M., 1987, Neural Darwinism: The Theory of Neuronal Group Selection, Basic Books, New York.

    Google Scholar 

  • Edelman, G. M., and Thiery, J.-P. (eds.), 1985, The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants. Wiley, New York.

    Google Scholar 

  • Edelman, G. M., Gall, W. E., and Cowan, W. M. (eds.), 1985, Molecular Bases of Neural Development, Wiley, New York.

    Google Scholar 

  • Edinger, L., 1899, The Anatomy of the Central Nervous System of Man and of Vertebrates in General, Davis, Philadelphia.

    Google Scholar 

  • Edinger, T., 1948, Evolution of the horse brain, Memoir Series of the Geological Society of America (Memoir 25), Waverly Press, Baltimore.

    Google Scholar 

  • Edinger, T., 1967, Brains from 40 million years of camelid history, in: Evolution of the Forebrain: Phylogenesis and Ontogenesis of the Forebrain ( R. Hassler and H. Stephan, eds.), Plenum Press, New York, pp. 153–161.

    Google Scholar 

  • Edinger, T., 1975, Paleoneurology 1804–1966. An annotated bibliography, Adv. Anat. Embryol. Cell Biol. 49.

    Google Scholar 

  • Elias, H., and Schwartz, D., 1969, Surface areas of the cerebral cortex of mammals determined by stereological methods, Science 166: 111–113.

    Article  PubMed  CAS  Google Scholar 

  • Elias, H., and Schwartz, D., 1971, Cerebro-cortical surface areas, volumes, lengths of gyri and their interdependence in mammals, including man, Z. Saeugetierkd. 36: 147–163.

    Google Scholar 

  • Elias, H., Haug, H., Lange, W, and Schwartz, D., 1967a, Cerebro-cortical surface areas of some mammals, Am. Zool. 7: 291.

    Google Scholar 

  • Elias, H., Kolodny, S., and Schwartz, D., 1967b, Oberflächenmessungen der Grosshirnrinde von Säugern mit besonderer Berücksichtigung des Menschen, der Cetacea, des Elefanten und der Marsupalia, in: Stereology: Proceedings of the Second International Congress for Stereology ( H. Elias, ed.), Springer, Berlin, pp. 77–78.

    Google Scholar 

  • Elias, H., Haug, H., Lange, W., Schlenska, G., and Schwartz, D., 1969, Oberflächenmessungen der Grosshirnrinde von Säugern mit besonderer Berücksichtigung des Menschen, der Cetacea, des Elephanten und der Marsupiala, Anat. Anz. 124: 461–463.

    Google Scholar 

  • Elias, H., Hyde, D. M., and Scheaffer, R. L. (eds.), 1983, A Guide to Practical Stereology, Karger, Basel. England, D. R., and Dillon, L. S., 1972, Cerebrum of the sea otter, Tex. J. Sci. 24: 221–232.

    Google Scholar 

  • Evrard, P., Caviness, V. S., Jr., Prats-Vinas, J., and Lyon, G., 1978, The mechanisms of arrest of neuronal migration in the Zellweger malformation: An hypothesis based upon cytoarchitectonic analysis, Acta Neuropathol. 41: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Falk, D., 1980, Hominid brain evolution: The approach from paleoneurology, Yearb. Phys. Anthropol. 23: 93–107.

    Article  Google Scholar 

  • Falk, D., 1981, Sulcal patterns of fossil Theropithecus baboons: Phylogenetic and functional implications, Int. J. Primatol. 2: 57–69.

    Article  Google Scholar 

  • Falk, D., 1982, Mapping fossil endocasts, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 217–226.

    Chapter  Google Scholar 

  • Falzi, G., Perrone, P., and Vignolo, L. A., 1982, Right-left asymmetry in anterior speech region, Arch. Neurol. 39: 239–240.

    Article  PubMed  CAS  Google Scholar 

  • Farkas-Bargeton, E., and Diebler, M. F., 1978, A topographical study of enzyme maturation in human cerebral neocortex: A histochemical and biochemical study, in: Architectonics of the Cerebral Cortex ( M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 175–190.

    Google Scholar 

  • Feldman, S. H., and Johnson, J. I., Jr., 1988, Kinesthetic cortical area anterior to primary somatic sensory cortex in the raccoon (Procyon lotor), J. Comp. Neurol. 277: 80–95.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., 1984, A Golgi analysis of unlayered polymicrogyria, Acta Neuropathol. 65: 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Fábregues, I., and Condom, E., 1986a, A Golgi study of the sixth layer of the cerebral cortex. I. The lissencephalic brain of Rodentia, Lagomorpha, Insectivora and Chiroptera, J. Anat. 145: 217–234.

    PubMed  CAS  Google Scholar 

  • Ferrer, L, Fábregues, I., and Condom, E., 1986b, A Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of Carnivora, Artiodactyla and Primates, J. Anat. 146: 87–104.

    PubMed  CAS  Google Scholar 

  • Ferrer, I., Fábregues, L, and Condom, E., 1987, A Golgi study of the sixth layer of the cerebral cortex. III. Neuronal changes during normal and abnormal cortical folding, J. Anat. 152: 71–82.

    PubMed  CAS  Google Scholar 

  • Filimonoff, I. N., 1928, Über die Varianten der Hirnfurchen des Hundes, J. Psychol. Neurol. 36: 22–43.

    Google Scholar 

  • Filimonoff, I. N., 1964, Homologies of the cerebral formations of mammals and reptiles, J. Hirnforsch. 7: 229–251.

    PubMed  CAS  Google Scholar 

  • Finlay, B. L., Wikler, K. C., and Sengelaub, D. R., 1987, Regressive events in brain development and scenarios for vertebrate brain evolution, Brain Behau Evol. 30: 102–117.

    Article  CAS  Google Scholar 

  • Fitzpatrick, K. A., and Imig, T. J., 1982, Organization of auditory connections. The primate auditory cortex, in: Cortical Sensory Organization, Volume 3 ( C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 71–109.

    Chapter  Google Scholar 

  • Flechsig, P., 1898, Neue Untersuchungen über die Markbildung in den menschlichen Grosshirnlappen, Neurol. Centralbl. 17: 977–996.

    Google Scholar 

  • Fleischhauer, K., 1978, Cortical architectonics: The last 50 years and some problems of today, in: Architectonics of the Cerebral Cortex ( M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 99–118.

    Google Scholar 

  • Fleischhauer, K., and Detzer, K., 1975, Dendritic bundling in the cerebral cortex, in: Physiology and Pathology of Dendrites ( G. W. Kreutzberg, ed.), Raven Press, New York, pp. 71–77.

    Google Scholar 

  • Fleischhauer, K., Zilles, K., and Schleicher, A., 1980, A revised cytoarchitectonic map of the neocortex of the rabbit (Oryctolagus cuniculus), Anat. Embryol. 161: 121–143.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. E., Donoghue, J. P., and Ebner, F. F., 1981, Laminar organization of efferent cells in the parietal cortex of the Virginia opossum, Exp. Brain Res. 43: 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. H., and Wilczynski, W., 1986, Allometry of major CNS divisions: Towards a reevaluation of somatic brain—body scaling, Brain Behav. Evol. 28: 157–169.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. L., Kurtzke, J. F., Masucci, E. F., and Ferrero, A. A., 1965, Cerebral midline displacement with a cerebellar lesion, Acta Neurol. Latinoam. 11: 174–184.

    PubMed  CAS  Google Scholar 

  • Frick, H,, and Nord, H. J., 1963, Domestikation und Hirngewicht, Anat. Am. 113: 307–316.

    Google Scholar 

  • Friede, R., 1954, Der quantitative Anteil der Glia an der Cortexentwicklung, Acta Anat. 20: 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Friede, R. L., 1975, Developmental Neuropathology, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Friedman, D. P., 1983, Laminar patterns of termination of cortico-cortical afférents in the somatosensory system, Brain Res. 273: 247–151.

    Article  Google Scholar 

  • Friedman, D. P., and Jones, E. G., 1981, Thalamic input to areas 3a and 2 in monkeys, J. Neurophysiol. 45: 59–85.

    PubMed  CAS  Google Scholar 

  • Friedman, D. P., Jones, E. G., and Burton, H., 1980, Representation pattern in the second somatic sensory area of the monkey cerebral cortex, J. Comp. Neurol. 192: 21–41.

    Article  PubMed  CAS  Google Scholar 

  • Galaburda, A. M., 1979, Anatomical asymmetries, in: Neural Growth and Differentiation ( E. Meisami and M. A. B. Brazier, eds.), Raven Press, New York, pp. 11–25.

    Google Scholar 

  • Galaburda, A. M., and Pandya, D. N., 1982, Role of architectonics and connections in the study of primate brain evolution, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 203–216.

    Chapter  Google Scholar 

  • Galaburda, A. M., LeMay, M., Kemper, T. L., and Geschwind, N., 1978, Right-left asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance, Science 199: 852–856.

    Article  PubMed  CAS  Google Scholar 

  • Galaburda, A., Sherman, G., and Geschwind, N., 1985, Cerebral lateralization: Historical notes on animal studies, in: Cerebral Lateralization in Nonhuman Species ( S. D. Glick, ed.), Academic Press, New York, pp. 1–10.

    Google Scholar 

  • Gerhardt, E., 1940, Die cytoarchitektonik des Isocortex parietalis beim Menschen, J. Psychol. Neurol. 49: 367–419.

    Google Scholar 

  • Geschwind, N., and Galaburda, A. M. (eds.), 1984, Cerebral Dominance: The Biological Foundations, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Geschwind, N., and Galaburda, A. M., 1985, Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research, Arch. Neurol. 42: 428–459.

    Article  PubMed  CAS  Google Scholar 

  • Geschwind, N., and Galaburda, A. M., 1987, Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Geschwind, N., and Levitsky, W., 1968, Human brain: Left—right asymmetries in temporal speech region, Science 161: 186–187.

    Article  PubMed  CAS  Google Scholar 

  • Ghiselin, M. T., 1976, The nomenclature of correspondence: A new look at “homology” and “analogy,” in: Evolution, Brain, and Behavior: Persistent Problems (R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 129–142.

    Google Scholar 

  • Giguere, M., and Goldman-Rakic, P. S., 1988, Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys, J. Comp. Neurol. 277: 195–213.

    Article  PubMed  CAS  Google Scholar 

  • Glasser, O. C., 1916, The theory of autonomous folding in embryogenesis, Science 44: 505–509.

    Article  Google Scholar 

  • Glick, S. D. (ed.), 1985, Cerebral Lateralization in Nonhuman Species, Academic Press, New York.

    Google Scholar 

  • Goldman, P. S., and Galkin, T. W., 1978, Prenatal removal of frontal association cortex in the fetal rhesus monkey: Anatomical and functional consequences in postnatal life, Brain Res. 152: 451–485.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, P. S., and Nauta, W. J. H., 1977, Columnar distribution of cortico-cortico fibers in the

    Google Scholar 

  • frontal association, limbic, and motor cortex of the developing rhesus monkey, Brain Res. 122:393–413. Goldman-Rakic, P. S., 1980, Morphological consequences of prenatal injury to the primate brain, Prog. Brain Res. 53:3–19.

    Google Scholar 

  • Goldman-Rakic, P. S., 1981, Development and plasticity of primate frontal association cortex, in: The Organization of the Cerebral Cortex: Proceedings of a Neurosciences Research Program Colloquium (F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass. pp. 69–97.

    Google Scholar 

  • Goldman-Rakic, P. S., and Rakic, P., 1979, Experimental modification of gyral patterns, in: Neural Growth and Differentiation ( E. Meisami and M. A. B. Brazier, eds.), Raven Press, New York, pp. 179–192.

    Google Scholar 

  • Goldman-Rakic, P. S., and Schwartz, M. L., 1982, Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates, Science 216: 755–757.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J., 1975, Allometry in primates, with emphasis on scaling and the evolution of the brain, in: Approaches to Primate Paleobiology ( F. S. Szalay, ed.), Karger, Basel, pp. 244–292.

    Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Graybiel, A. M., 1972, Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat, Brain Res. 44: 99–125.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M., and Berson, D. M., 1981, On the relation between transthalamic and transcortical pathways in the visual system, in: The Organization of the Cerebral Cortex: Proceedings of a Neurosciences Research Program Colloquium ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 285–319.

    Google Scholar 

  • Graybiel, A. M., and Berson, D. M., 1982, Families of related cortical areas in the extrastriate visual system. Summary of an hypothesis, in: Cortical Sensory Organization, Volume 2 ( C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 103–120.

    Google Scholar 

  • Greenfield, J. G., and Wolfsohn, J. M., 1935, Microcephalia vera. A study of two brains illustrating the agyric form and the complex microgyric form, Arch. Neurol. Psychiatr. 33: 1296–1316.

    Article  Google Scholar 

  • Greenough, W. T, and Chang, F.-L. F., 1988, Plasticity of synapse structure and pattern in the cerebral cortex, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 391–440.

    Chapter  Google Scholar 

  • Gross, C. G., Desimone, R., Albright, T. D., and Schwartz, E. L., 1984, Inferior temporal cortex as a visual integration area. in: Cortical Integration ( F. Reinoso-Suárez and C. Ajmone-Marsan, eds.), Raven Press, New York, pp. 291–315.

    Google Scholar 

  • Gurche, J. A., 1982, Early primate brain evolution, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 227–246.

    Chapter  Google Scholar 

  • Hahn, M. E., Jensen, C., and Dudek, B. C., (eds.), 1979, Development and Evolution of Brain Size: Behavioral Implications, Academic Press, New York.

    Google Scholar 

  • Haight, J. R., and Murray, P. F., 1981, The cranial endocast of the early Miocene marsupial, Wynyar-dia bassiana. An assessment of taxonomic relationships based upon comparisons of recent forms, Brain Behau. Evol. 19: 17–36.

    Article  CAS  Google Scholar 

  • Haight, J. R., and Neylon, L., 1978a, Morphological variation in the brain of the marsupial brush-tailed possum, Trichosurus vulpecula, Brain Behau Evol. 15: 415–445.

    Article  Google Scholar 

  • Haight, J. R., and Neylon, L., 1987b, The organization of neocortical projections from the ven-troposterior thalamic complex in the marsupial brush-tailed possum, Trichosurus vulpecula: A horseradish peroxidase study, J. Anat. 126: 459–485.

    Google Scholar 

  • Hamburger, V, and Oppenheim, R. W., 1982, Naturally occurring neuronal death in vertebrates, Neurosci. Comment. 1: 39–55.

    Google Scholar 

  • Hanaway, J., Lee, S. I., and Netsky, K. G., 1968, Pachygyria: Relation of findings to modern embryo-logical concepts, Neurology (Minneapolis) 18: 791–799.

    Article  CAS  Google Scholar 

  • Harde, K. W, 1957, Das problem der Furchenbildung in Vorderhirn, untersucht an indischen Sciuriden, Zool. Jahrb. Abt. Allg. Zool Physiol Tiere 67: 207–228.

    Google Scholar 

  • Harden, W. B., Jr., Arumugasamy, N., and Jameson, H. D., 1968, Pattern of localization in ‘precentrar motor cortex of raccoon, Brain Res. 11: 611–627.

    Article  Google Scholar 

  • Harman, P. J., 1943, Volumes of basal ganglia and cortex in mammals, Proc. Soc. Exp. Biol. Med. 54: 297–298.

    Google Scholar 

  • Harman, P. J., 1947a, On the significance of fissuration of the isocortex, J. Comp. Neurol. 87: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Harman, P. J., 1947b, Quantitative analysis of the brain-isocortex relationship in mammals, Anat. Ree. 97: 342.

    CAS  Google Scholar 

  • Harnad, S., Doty, R. W, Goldstein, L., Jaynes, J., and Krauthamer, G. (eds.), 1977, Lateralization in the Nervous System, Academic Press, New York.

    Google Scholar 

  • Harting, J. K., and Noback, C. R., 1970, Corticospinal projections from the pre- and postcentral gyri in the squirrel monkey (Saimirí sciureus), Brain Res. 24: 322–328.

    Article  PubMed  CAS  Google Scholar 

  • Hassler, R., and Muhs-Clement, K., 1964, Architektonischer Aufbau des sensorimotorischen und parietalen Kortex der Katze, J. Hirnforsch. 6: 377–420.

    Google Scholar 

  • Haug, H., 1956, Remarks on the determination and significance of the gray cell coefficient, J. Comp. Neurol 104: 473–492.

    Article  PubMed  CAS  Google Scholar 

  • Haug, H., 1970, Quantitative data in neuroanatomy, Prog. Brain Res. 33: 113–127.

    Article  PubMed  CAS  Google Scholar 

  • Haug, H., 1976, Die Zelldichte im Cortex der Primaten und ihre Bedeutung für die Phylogenese der Schaltzellen, Verh. Anat. Ges. 70: 253–258.

    PubMed  Google Scholar 

  • Haug, H., 1979, The evaluation of cell-densities and of nerve-cell size distribution by stereological procedures in a layered tissue (cortex cerebri), Microsc. Acta 82: 147–161.

    PubMed  CAS  Google Scholar 

  • Haug, H., 1982, The location and size distribution of neurons in the layered cortex, Acta Stereol. 1: 259–267.

    Google Scholar 

  • Haug, H., 1986, History of neuromorphometry, J. Neurosci. Methods 18: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Haug, H., 1987, Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores and one elephant), Am. J. Anat. 180: 126–142.

    Article  PubMed  CAS  Google Scholar 

  • Haymaker, W., and Adams, R. D. (eds.), 1982, Histology and Histopathology of the Nervous System, Thomas, Springfield, Ill.

    Google Scholar 

  • Haymaker, W., and Schiller, F., 1970, The Founders of Neurology, 2nd ed., Thomas, Springfield, Ill.

    Google Scholar 

  • Hefftler, F., 1878, Die Grosshirnwindungen des Menschen und deren Beziehungen zum Schädeldach, Arch. Anthropol. 10: 243–252.

    Google Scholar 

  • Henneberg-Neubabelsberg, R., 1900, Messung der Oberflächenausdehnung der Grosshirnrinde, J. Psychol. Neurol. 17: 144–158.

    Google Scholar 

  • Hennig, A., 1958, Kritische Betrachtungen zur Volumen- und Oberflächenmessungen in der Mikroskopie, Zeiss-Werkzeitschrift 30: 3–12.

    Google Scholar 

  • Herre, v. W., 1967, Einige Bemerkungen zur Modifikabilität, Vererbung und Evolution von Merkmalen des Vorderhirns bei Säugetieren, in: Evolution of the Forebrain. Phylogenesis and Ontogenesis of the Forebrain ( R. Hassler and H. Stephan, eds.), Plenum Press, New York, pp 162–174.

    Google Scholar 

  • Herron, P., 1978, Somatotopic organization of mechanosensory projections to SII cerebral neocortex in the raccoon (Procyon lotor) J. Comp. Neurol. 181: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Herron, P., 1983, The connections of cortical somatosensory areas I and II with separate nuclei in the ventroposterior thalamus in the raccoon, Neuroscience 8: 243–257.

    Article  PubMed  CAS  Google Scholar 

  • Herron, P., and Johnson, J. I., 1987, The organization of intracortical and commissural connections in somatosensory cortical areas I and II in the raccoon, J. Comp. Neurol. 257: 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Hershkovitz, P., 1970, Cerebral fissurai patterns in platyrrhine monkeys, Folia. Primatol. 13: 213–240.

    Article  PubMed  CAS  Google Scholar 

  • Hochstetter, F., 1924, Ueber die Entwicklung des Gehirns, Verh. Anat. Ges. 33: 4–23.

    Google Scholar 

  • Hodos, W., 1976, The concept of homology and the evolution of behavior, in: Evolution, Brain, and Behavior: Persistent Problems ( R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 153–167.

    Google Scholar 

  • Hodos, W., 1982, Some perspectives on the evolution of intelligence and the brain, in: Animal Mind-Human Mind ( D. R. Griffin, ed.), Springer-Verlag, Berlin, pp. 44–53.

    Google Scholar 

  • Hodos, W., 1986, The evolution of the brain and the nature of animal intelligence, in: Animal Intelligence: Insights into the Animal Mind ( R. J. Hoage and L. Goldman, eds.), Smithsonian Museum, Washington, D.C.

    Google Scholar 

  • Hodos, W., 1988, Comparative neuroanatomy and the evolution of intelligence, in: Intelligence and Evolutionary Biology ( H. J. Jerison and I. Jerison, eds.), Springer-Verlag, Berlin, pp. 93–108.

    Chapter  Google Scholar 

  • Hodos, W., and Campbell, C. B. G., 1969, Scala Naturae: Why there is no theory in comparative psychology, Psychol. Rev. 76: 337–350.

    Article  Google Scholar 

  • Hodos, W., and Campbell, C. B. G., 1989, Evolutionary scales and comparative studies of animal cognition, in: The Neurobiology of Comparative Cognition ( R. P. Kesner and D. S. Olton, eds.), Erlbaum, Hillsdale, N.J.

    Google Scholar 

  • Hofer, H., 1952, Der Gestaltwandel des Schädels der Saugetierer und Vogel, mit besonderer Berücksichtigung der Knickungstypen und der Schädelbasis, Verh. Anat. Ges. (Suppl. Anat. Anz.) 50: 102–113.

    Google Scholar 

  • Hofer, H. O., 1969, The evolution of the brain of primates. Its influence on the form of the skull, Ann. N.Y. Acad. Sci. 167: 341–356.

    Article  Google Scholar 

  • Hofman, M. A., 1984, Towards a General Theory of Encephalization. An Allometric Study of the Evolution and Morphogenesis of the Mammalian Brain, Academisch Proefschrift, Amsterdam.

    Google Scholar 

  • Hofman, M. A., 1985a, Size and shape of the cerebral cortex in mammals. I. The cortical surface, Brain Behau Evol. 27: 28–40.

    Article  CAS  Google Scholar 

  • Hofman, M. A., 1985b, Neuronal correlates of corticalization in mammals: A theory, J. Theor. Biol. 112: 77–95.

    Article  PubMed  CAS  Google Scholar 

  • Hofman, M. A., 1989, On the evolution and geometry of the brain in mammals, Prog. Neurobiol. 32: 137–158.

    Article  PubMed  CAS  Google Scholar 

  • Hofman, M. A., Laan, A. C., and Uylings, H. B. M., 1986, Bivariate linear models in neurobiology: Problems of concept and methodology, J. Neurosci. Methods 18: 103–114.

    Article  PubMed  CAS  Google Scholar 

  • Hogben, L., 1971, The Vocabulary of Science, Stein & Day, New York.

    Google Scholar 

  • Holloway, R. L., 1970, Neural parameters, hunting and the evolution of the human brain, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton—Century—Crofts, New York, pp. 299–310.

    Google Scholar 

  • Holloway, R. L., 1974, On the meaning of brain size, Science 184: 677–679.

    Article  Google Scholar 

  • Holloway, R. L., 1975, The role of human social behavior in the evolution of the brain (Forty-third James Arthur lecture on the evolution of the human brain, 1973 ), The American Museum of Natural History, New York.

    Google Scholar 

  • Holloway, R. L., 1976, Paleoneurological evidence for language origins, Ann. N.Y. Acad. Sci. 280: 330–348.

    Article  PubMed  CAS  Google Scholar 

  • Holloway, R. L., 1979, Brain size, allometry, and reorganization: Toward a synthesis, in: Development and Evolution of Brain Size: Behavioral Implications (M. E. Hahn, C.Jensen, and B. C. Dudek, eds.) Academic Press, New York, pp. 59–88.

    Google Scholar 

  • Holloway, R. L., and Post, D. G., 1982, The relative brain measures and hominid mosaic evolution, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 57–76.

    Chapter  Google Scholar 

  • Hopf, A., 1954, Zur architektonischen Gliederung der menschlichen Hirnrinde: Kritische Bemerkungen zu modernen Strömungen in der Architektonik, J. Hirnforsch 1: 442–496.

    Google Scholar 

  • Hopf, A., 1964, Localization in the cerebral cortex from the anatomical point of view, in: Cerebral Localization and Organization ( G. Schaltenbrand and C. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 5–16.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1965, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289.

    PubMed  CAS  Google Scholar 

  • Huxley, J. S., 1932, Problems of Relative Growth, Dial Press, New York.

    Google Scholar 

  • Huxley, J. S., Needham, J., and Lerner, I. M., 1941, Terminology of relative growth-rates, Nature 148: 225.

    Article  Google Scholar 

  • Imig, T. J., Reale, R. A., and Brugge, J. F., 1982, The auditory cortex. Patterns of corticocortical projections related to physiological maps in the cat, in: Cortical Sensory Organization, Volume 3 ( C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 1–41.

    Chapter  Google Scholar 

  • Innocenti, G. M., 1986, General organization of callosal connections in the cerebral cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 291–353.

    Google Scholar 

  • Jacob, H., 1936a, Eine Gruppe familiärer Mikro- und Mikrencephalie, Z. Gesamte Neurol. Psychiatr. 156: 633–645.

    Article  Google Scholar 

  • Jacob, H., 1936b, Faktoren bei der Entstehung der normalen und der entwicklungsgestörten Hirnrinde, Z. Gesamte Neurol. Psychiatr. 55: 1–39.

    Article  Google Scholar 

  • Jacob, H., 1940, Die feinere Oberflächengestaltung der Hirnwindungen, die Hirnwarzenbildung und die Mikrogyrie. Ein Beitrag zum problem der Furchen- und Windungsbildung des menschlichen Gehirns, Z. Gesamte Neurol. Psychiatr. 170: 64–84.

    Article  Google Scholar 

  • Jacobs, M. S., Galaburda, A. M., McFarland, W. L., and Morgane, P. J., 1984, The insular formations of the dolphin brain: Quantitative cytoarchitectonic studies of the insular component of the limbic lobe, J. Comp. Neurol. 225: 396–432.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M., 1978, Developmental Neurobiology, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Jameson, H. D., Arumugasamy, N., and Hardin, W. B., Jr., 1968, The supplementary motor area of the raccoon, Brain Res. 11: 628–637.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, G., 1913, The morphology of the sulcus interparietalis (B.N.A.), J. Anat. Physiol. 47: 365–380.

    PubMed  CAS  Google Scholar 

  • Jefferson, G., 1915, Cortical localisation and furrow formation, J. Comp. Neurol. 25: 291–300.

    Article  Google Scholar 

  • Jellinger, K., and Rett, A., 1976, Agyria—pachygyria (lissencephaly syndrome), Neuropaediatrie 7: 66–91.

    Article  CAS  Google Scholar 

  • Jerison, H. J., 1970a, Brain evolution: New light on old principles, Science 170: 1224–1225.

    Article  PubMed  CAS  Google Scholar 

  • Jerison, H. J., 1970b, Gross brain indices and the analysis of fossil endocasts, in: The Primate Brain ( C. R. Noback, and W. Montagna, eds.), Appleton—Century—Crofts, New York, pp. 225–244.

    Google Scholar 

  • Jerison, H. J., 1973, Evolution of the Brain and Intelligence, Academic Press, New York.

    Google Scholar 

  • Jerison, H. J., 1976, Principles of the evolution of the brain and behavior, in: Evolution, Brain, and Behavior: Persistent Problems ( R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 23–45.

    Google Scholar 

  • Jerison, H. J., 1977a, Should phrenology be rediscovered? Curr. Anthropol. 18: 744–746.

    Article  Google Scholar 

  • Jerison, H. J., 1977b, The theory of encephalization, Ann. N.Y. Acad. Sci. 299: 146–160.

    Article  PubMed  CAS  Google Scholar 

  • Jerison, H. J., 1978, Brain and intelligence in whales, in: Whales and Whaling ( Sir S. Frost, ed.), Government Publishing Service, Canberra, Australia, pp. 159–197.

    Google Scholar 

  • Jerison, H. J., 1979a, Brain, body and encephalization in early primates, J. Hum. Evol. 8: 615–635.

    Article  Google Scholar 

  • Jerison, H. J., 1979b, The evolution of diversity in brain size, in: Development and Evolution of Brain Size ( M. E. Hahn, C. Jensen, and B. Dudek, eds.), Academic Press, New York, pp. 29–57.

    Google Scholar 

  • Jerison, H. J., 1979c, On the evolution of neurolinguistic variability: Fossil brains speak, in: Individual Differences in Language Ability and Language Behavior ( C. J. Fillmore, D. Kempler, and S.-Y. Wang, eds.), Academic Press, New York, pp. 277–287.

    Google Scholar 

  • Jerison, H. J., 1982, Allometry, brain size, cortical surface, and convolutedness, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 77–84.

    Chapter  Google Scholar 

  • Jerison, H. J., and Jerison, I. (eds.), 1988, Intelligence and Evolutionary Biology, Springer-Verlag, Berlin.

    Google Scholar 

  • Johnson, J. I., 1977, Central nervous system of marsupials, in: The Biology of Marsupials ( Hunsaker, D., II, ed.), Academic Press, New York, pp. 157–278.

    Google Scholar 

  • Johnson, J. I., 1980, Morphological correlates of specialized elaborations in somatic sensory cerebral neocortex, in: Comparative Neurology of the Telencephalon ( S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 423–447.

    Chapter  Google Scholar 

  • Johnson, J. I., 1985, Thalamocortical organization in the raccoon: Comparison with the primate, in: Hand Function and the Neocortex ( A. W. Goodwin and I. Darian-Smith, eds.), Springer, Berlin, pp. 294–312.

    Chapter  Google Scholar 

  • Johnson, J. I., Welker, W. I., and Pubols, B. H., Jr., 1968, Somatotopic organization of raccoon dorsal column nuclei, J. Comp. Neurol. 132: 1–44.

    Article  PubMed  Google Scholar 

  • Johnson, J. I., Haight, J. R., and Megirian, D., 1973, Convolutions related to sensory projections in cerebral neocortex of marsupial wombats, J. Anat. 114: 153 (abstract).

    Google Scholar 

  • Johnson, J. I., Rubel, E. W., and Hatton, G. E., 1974, Mechanosensory projections to cerebral cortex of sheep, J. Comp. Neurol. 158: 81–108.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. I., Ostapoff, E. M., and Warach, S., 1982, The anterior border zones of primary somatic sensory (S1) neocortex and their relation to cerebral convolutions, shown by micromapping of peripheral projections to the region of the fourth forepaw digit representations in raccoons, Neuroscience 7: 915–936.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, M. V., 1988, Biochemistry of neurotransmitters in cortical development, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 211–236.

    Chapter  Google Scholar 

  • Jones, E. G., 1976, Commissural, cortico-cortical and thalamic “columns” in the somatic sensory cortex of primates, in: Afferent and Intrinsic Organization of Laminated Structures in the Brain ( O. Creutzfeldt, ed.), Springer, Berlin, pp. 309–316.

    Chapter  Google Scholar 

  • Jones, E. G., 1984a, History of cortical cytology, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 1–32.

    Chapter  Google Scholar 

  • Jones, E. G., 1984b, Laminar distribution of cortical efferent cells, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 521–553.

    Chapter  Google Scholar 

  • Jones, E. G., 1984c, Organization of the thalamocortical complex and its relation to sensory processes, in: Handbook of Physiology, Section 1, Volume III, Part I ( J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, pp. 149–212.

    Google Scholar 

  • Jones, E. G., 1985, The Thalamus, Plenum Press, New York.

    Google Scholar 

  • Jones, E. G., 1986, Connectivity of the primate sensory-motor cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 113–183.

    Google Scholar 

  • Jones, E. G., and Burton, H., 1974, Cytoarchitecture and somatic sensory connectivity of thalamic nuclei other than the ventrobasal complex in the cat, J. Comp. Neurol. 154: 395–432.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., and Burton, H., 1976, Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates, J. Comp. Neurol. 168: 197–248.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G, and Powell, T. P. S., 1969a, Connexions of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions, Brain 92: 477–502.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1969b, Connexions of the somatic sensory cortex of the rhesus

    Google Scholar 

  • monkey. II. Contralateral cortical connexions, Brain 92: 717–730.

    Google Scholar 

  • Jones, E. G., and Powell, T. P. S., 1970, Connexions of the somatic sensory cortex of the rhesus monkey. III. Thalamic connexions, Brain 93: 37–56.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., and Wise, S. P., 1977, Size, laminar and columnar distribution of efferent cells in the sensory-cortex of monkeys, J. Comp. Neurol. 175: 391–438.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., Burton, H., and Porter, R., 1975, Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates, Science 190: 572–574.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., Coulter, J. D., Burton, H., and Porter, R., 1977, Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory—motor cortex of monkeys, J. Comp. Neurol. 173: 53–80.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., Coulter, J. D., and Hendry, S. H. C., 1978, Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys, J. Comp. Neurol. 181: 291–348.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., Wise, S. P., and Coulter, J. D., 1979, Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys, J. Comp. Neurol. 183: 833–882.

    Article  PubMed  CAS  Google Scholar 

  • Jungers, W. L. (ed.), 1985, Size and Scaling in Primate Biology, Plenum Press, New York.

    Google Scholar 

  • Kaas, J. H., 1982, The segregation of function in the nervous system: Why do sensory systems have so many subdivisions? in: Contributions to Sensory Physiology ( D. Neff, ed.), Academic Press, New York, pp. 201–240.

    Google Scholar 

  • Kaas, J. H., 1987, The organization of neocortex in mammals: Implications for theories of brain function, Annu. Rev. Psychol. 38: 129–151.

    Article  PubMed  CAS  Google Scholar 

  • Kalter, H., 1968, Teratology of the Central Nervous System, University of Chicago Press, Chicago.

    Google Scholar 

  • Kandel, E. R., and Schwartz, J. H. (eds.), 1985, Principles of Neural Science, 2nd ed., Elsevier, Amsterdam.

    Google Scholar 

  • Karplus, J. P., 1905, Ueber Familienähnlichkeiten an den Grosshirnfurchen des Menschen, Arb. Neurol. Inst. Wein 12: 1–58 (with 20 plates).

    Google Scholar 

  • Kawamura, K., 1971, Variations of the cerebral sulci in the cat, Acta Anat. 80204–221.

    Google Scholar 

  • Kawamura, K., 1973a, Corticocortical fiber connections of the cat cerebrum. I. The temporal region, Brain Res. 51: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, K., 1973b, Corticocortical fiber connections of the cat cerebrum. II. The parietal region, Brain Res. 51: 23–40.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, K., 1973c, Corticocortical fiber connections of the cat cerebrum. III. The occipital region, Brain Res. 51: 41–60.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, K., and Naito, J., 1976, Corticocortical afferents to the cortex of the middle suprasylvian sulcus area in the cat, in: Afferent and Intrinsic Organization of Laminated Structures in the Brain ( O. Creutzfeldt, ed.), Springer-Verlag, Berlin, pp. 323–328.

    Chapter  Google Scholar 

  • Kawamura, K., and Otani, K., 1970, Corticocortical fiber connections in the cat cerebrum: The frontal region, J. Comp. Neurol. 139: 423–448.

    Article  PubMed  CAS  Google Scholar 

  • Kemper, T. L., and Galaburda, A. M., 1984, Principles of cytoarchitectonics, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 35–58.

    Google Scholar 

  • Kier, L. E., 1977, The cerebral ventricles: A phylogenetic and ontogenetic study, in: Radiology of the Skull and Brain: Anatomy and Pathology ( T. H. Newton and D. G. Potts, eds.), Mosby, St. Louis, pp. 2787–2914.

    Google Scholar 

  • Killackey, H. P., 1973, Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat, Brain Res. 51: 326–331.

    Article  PubMed  CAS  Google Scholar 

  • Killackey, H. P., and Ebner, F. F., 1972, Two different types of thalamocortical projections to a single cortical area in mammals, Brain Behau E vol. 6: 141–169.

    Article  CAS  Google Scholar 

  • Killackey, H. P., and Ebner, F. F., 1973, Convergent projections of three separate thalamic nuclei on to a single cortical area, Science 179: 283–285.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, J. A. W, and Johnson, J. I., 1983, Phylogeny through brain traits: Trees generated by neural characters, Brain Behau Evol. 22: 60–69.

    Article  CAS  Google Scholar 

  • Klatt, B., 1921, Studien zum Domestikationsproblem. Untersuchungen am Hirn, Bibl. Genet. 11: 1–180.

    Google Scholar 

  • Klatt, B., 1949, Die theoretische Biologie und die Problematik der Schädelform, Biol. Gen. 19: 51–89.

    Google Scholar 

  • Klatt, B., and Oboussier, H., 1951, Weitere Untersuchungen zur Frage der quantitativen Ver-shiedenheiten gegensätzlicher Wuchsformtypen beim Hund, Zool. Anz. 146: 223–240.

    Google Scholar 

  • König, N., and Marty, R., 1981, Early neurogenesis and synaptogenesis in cerebral cortex, in: Studies of Normal and Abnormal Development of the Nervous System ( W. Lierse and F. Beck, eds.), Karger, Basel, pp. 152–160.

    Google Scholar 

  • Kraus, W. M., Davison, C., and Weil, A., 1928, The measurement of cerebral and cerebellar surfaces. III. Problems encountered in measuring the cerebral cortex surface in man, Arch. Neurol. Psychiatr. 19: 454–477.

    Article  Google Scholar 

  • Kreiner, J., 1960, Myeloarchitectonics of the orbital gyrus of cerebral cortex, Bull. Acad. Pol. Sci. 8: 159–162.

    Google Scholar 

  • Kreiner, J., 1961a, Myeloarchitectonics of the central sulcus in the dog’s brain, Bull. Acad. Pol. Sci. 9: 481–484.

    Google Scholar 

  • Kreiner, J., 1961b, The myeloarchitectonics of the frontal cortex in the dog, J. Comp. Neurol. 116: 117–133.

    Article  PubMed  CAS  Google Scholar 

  • Kreiner, J., 1962, Myeloarchitectonics of the cingular cortex in dog, J. Comp. Neurol. 119: 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Kreiner, J., 1964a, Myeloarchitectonics of the sensori-motor cortex in dog, J. Comp. Neurol. 122: 181–200.

    Article  PubMed  CAS  Google Scholar 

  • Kreiner, J., 1964b, Myeloarchitectonics of the parietal cortex in dog, Acta Biol. Exp. (Warsaw) 24: 195–212.

    CAS  Google Scholar 

  • Kreiner, J., 1964c, Myeloarchitectonics of the perisylvian cortex in dog, J. Comp. Neurol. 123: 231–242.

    Article  PubMed  CAS  Google Scholar 

  • Kreiner, J., 1968, Homologies of the fissurai and gyral pattern of the hemispheres of the dog and monkey, Acta Anat. 70: 137–167.

    Article  PubMed  CAS  Google Scholar 

  • Kreiner, J., 1971, The neocortex of the cat, Acta Neurobiol. Exp. 31: 151–201.

    Article  CAS  Google Scholar 

  • Kreiner, J., 1973, Fissurai cortex in the brain of the mouse, Acta Anat. 86: 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, W. J. S., 1952, Differences of connections of gyral, sulcal and fundic cortex within the same cortical area, Anat. Ree. 112: 354.

    Google Scholar 

  • Krieg, W. J. S., 1963, Connections of the Cerebral Cortex, Brain Books, Evanston, Ill.

    Google Scholar 

  • Krieg, W.J. S., 1966, Functional Neuroanatomy, 3rd ed., Brain Books, Evanston, Ill.

    Google Scholar 

  • Krishnamurti, A., Welker, W. I., and Sanides, F., 1976, Microelectrode mapping of modality-specific somatic sensory cerebral neocortex in slow loris, Brain Behav. Evol. 13: 267–283.

    Article  PubMed  CAS  Google Scholar 

  • Krueg, J., 1878, Ueber die Furchung der Grosshirnrinde der Ungulaten, Z. Wiss. Zool. 31: 297–345.

    Google Scholar 

  • Kruska, D., 1970, Über die Evolution des Gehirns in der Ordnung Artiodactyla, Owen, 1848, insbesondere der Teilordnung Suina Gray, 1868, Z. Saeugetierkd. 35: 214–238.

    Google Scholar 

  • Kruska, D., 1973, Cerebralisation, Hirnevolution und domestikationsbedingte Hirngrössenän-derungen innerhalb der Ordnung Perrissodactyla, Owen, 1848, und ein Vergleich mit der Ordnung Artiodactyla, Owen, 1848, Z. Zool. Syst. Evolutionsforsch. 11: 81–103.

    Article  Google Scholar 

  • Kruska, D., 1975, Über die postnatale Hirnentwicklung beim Procyon cancrivorus cancrivorus (Pro-cyonidae; Mammalia), Z. Saeugetierkd. 40: 243–256.

    Google Scholar 

  • Kruska, D., 1982, Hirngrösenänderungen bei Tylopoden während der Stammesgeschichte und in der Domestikation, Verk. Dtsch. Zool. Ges. 75: 173–183.

    Google Scholar 

  • Kruska, D., 1987, How fast can total brain size change in mammals? J. Hirnforsch. 28: 59–70.

    PubMed  CAS  Google Scholar 

  • Kruska, D., 1988, Mammalian domestication and its effect on brain structure and behavior, in: Intelligence and Evolutionary Biology ( H. J. Jerison and I. Jerison, eds.), Springer-Verlag, Berlin, pp. 211–250.

    Chapter  Google Scholar 

  • Kunzle, H., 1978, Cortico-cortical efferents of primary motor and somatosensory regions of the cerebral cortex in Macaca fascicularis, Neuroscience 3: 25–39.

    Article  Google Scholar 

  • Kuypers, H. G.J. M., 1981, Anatomy of the descending pathways, in: Handbook of Physiology, Section I, Volume II, Part I ( J. M. Brookhart and V. B. Mountcastle, eds.), American Physiological Society, Bethesda, pp. 597–666.

    Google Scholar 

  • Kuypers, H. G. J. M., and Catsman-Berrevoets, C. E., 1984, Frontal corticosubcortical projections and their cells of origin, in: Cortical Integration (F., Reinoso-Suárez and C. Ajmone-Marsan, eds.), Raven Press, New York, pp. 171–192.

    Google Scholar 

  • Landacre, F. L., 1930, The major and minor sulci of the brain of the sheep, Ohio J. Sci. 30: 36–51.

    Google Scholar 

  • Landau, E., 1911, Über individuelle, durch mechanischen Druck benachbarter Windungen verursachte Wachstumshemmungen an der Gehirnoberflache, Morphol. Jahrb. Gegenbauer 43: 441–448.

    Google Scholar 

  • Landau, E., 1923, Anatomie des Grosshirns. Formanalytische Untersuchungen, Bircher, Bern.

    Google Scholar 

  • Larroche, J.-C., 1977, Development of the central nervous system, in: Developmental Pathology of the Neonate ( J.-C. Larroche, ed.), Exerpta Medica, Amsterdam, pp. 319–352.

    Google Scholar 

  • Larsell, O., and Jansen, J., 1970, The Comparative Anatomy and Histology of the Cerebellum from Mono-tremes through Apes, University of Minnesota Press, Minneapolis.

    Google Scholar 

  • Lashley, K., and Clark, G., 1946, The cytoarchitecture of the cerebral cortex of Ateles. A critical examination of cytoarchitectural studies, J. Comp. Neurol. 85: 223–305.

    Article  PubMed  CAS  Google Scholar 

  • Leavitt, P., Rakic, P., and Goldman-Rakic, P. S., 1981, Region-specific catecholamine innervation of primate cerebral cortex, Soc. Neurosci. Abstr. 7: 801.

    Google Scholar 

  • Leichnetz, G. R., 1980, An intrahemispheric columnar projection between two cortical multisensory convergence areas (inferior parietal lobule and prefrontal cortex): An anterograde study in macaque using HRP gel, Neurosci. Lett. 18: 119–124.

    Article  PubMed  CAS  Google Scholar 

  • LeMay, M., 1976, Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primate, in: Origins and Evolution of Language and Speech ( S. R. Harnad, H. D. Steklis, and J. Lancaster, eds.), New York Academy of Sciences, New York, pp. 349–366.

    Google Scholar 

  • LeMay, M., 1984, Radiological, developmental and fossil asymmetries, in: Cerebral Dominance: The Biological Foundations ( N. Geschwind and A. M. Galaburda, eds.), Harvard University Press, Cambridge, Mass., pp. 26–42.

    Google Scholar 

  • LeMay, M., 1985, Asymmetries of the brains and skulls of nonhuman primates, in: Cerebral Lateralization in Nonhuman Species ( S. D. Glick, ed.), Academic Press, New York, pp. 233–245.

    Google Scholar 

  • LeMay, M., Billig, M. S., and Geschwind, N., 1982, Asymmetries of the brains and skulls of non-human primates, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 263–277.

    Chapter  Google Scholar 

  • Lende, R. A., 1963a, Cerebral cortex: A sensorimotor amalgam in the Marsupalia, Science 141: 730–732.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., 1963b, Sensory representation in the cerebral cortex of the opossum (Didelphis virgi-niana), J. Comp. Neurol. 121: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., 1969, A comparative approach to the neocortex: Localization in monotremes, marsupials and insectivores, in: Comparative and Evolutionary Aspects of the Vertebrate Nervous System ( J. M. Petras and C. R. Noback, eds.), New York Academy of Sciences, New York, pp. 262–276.

    Google Scholar 

  • Lende, R. A., and Sadler, K. M., 1967, Sensory and motor areas in neocortex of hedgehog (Erin-aceus), Brain Res. 5: 390–405.

    Article  PubMed  CAS  Google Scholar 

  • Lende, R. A., and Woolsey, C. N., 1956, Sensory and motor localization in cerebral cortex of porcupine (Erethizon dorsatum), J. Neurophysiol. 19: 544–563.

    PubMed  CAS  Google Scholar 

  • Lewis, W. H., 1947, Mechanics of invagination, Anat. Ree. 97: 139–156.

    Article  CAS  Google Scholar 

  • Lierse, W., and Beck, F., 1981, Studies of Normal and Abnormal Development of the Nervous System, Karger, Basel.

    Google Scholar 

  • Lin, C. S., Weiler, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in the owl monkey, J. Comp. Neurol. 211: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Loeser, J. D., and Alvord, C. E., 1968, Agenesis of the corpus callosum, Brain 91: 553–570.

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó, R., 1938, The cerebral cortex: Architecture, intracortical connections and motor projections, in: Physiology of the Nervous System (J. F. Fulton, ed.), Oxford University Press, London, pp. 291–339.

    Google Scholar 

  • Macchi, G., and Bentivoglio, M., 1986, The thalamic intralaminar nuclei and the cerebral cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 355–401.

    Google Scholar 

  • Macphail, E. M., 1982, Brain and Intelligence in Vertebrates, Oxford University Press, ( Clarendon), London.

    Google Scholar 

  • Magalhães-Castro, B., and Saraiva, P. E. S., 1971, Sensory and motor representation in the cerebral cortex of the marsupial Didelphis azarae azarae, Brain Res. 34: 291–299.

    Google Scholar 

  • Magoun, H. W., and Anker, M. V., 1987, Francois Leuret’s studies of the cortical convolutions in the mammalian series, FASEB J. (Abstr.) 1: 506.

    Google Scholar 

  • Malamud, N., and Hirano, A., 1974, Atlas of Neuropathology, 2nd rev. ed., University of California Press, Berkeley.

    Google Scholar 

  • Mangold-Wirz, K., 1966, Cerebralization und Ontogenesemodus bei Eutherian, Acta Anat. 63: 449–508.

    Article  PubMed  CAS  Google Scholar 

  • Mann, G., 1896, On the homoplasty of the brain of rodents, insectivores and carnivores, J. Anat. Physiol. 30: 1–35.

    Google Scholar 

  • Mann, M. D., Glickman, S. E., and Towe, A. L., 1988, Brain/body relations among myomorph rodents, Brain Behav. Evol 31: 111–124.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1971, Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization, Z. Anat. Entwicklungsgesch. 134: 117–145.

    Article  CAS  Google Scholar 

  • Marin-Padilla, M., 1972, Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Development differences and their significances, Z. Anat. Entwicklungsgesch. 136: 125–142.

    Article  CAS  Google Scholar 

  • Marin-Padilla, M., 1978, Dual origin of the mammalian neocortex and evolution of the cortical plate, Anat. Embryol. 152: 109–126.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1984, Neurons of layer I. A developmental analysis, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 447–478.

    Google Scholar 

  • Marin-Padilla, M., 1988, Early ontogenesis of the human cerebral cortex, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 1–30.

    Chapter  Google Scholar 

  • Martin, K. A. C., 1984, Neuronal circuits in cat striate cortex, in: Cerebral Cortex, Volume 2 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 241–284.

    Chapter  Google Scholar 

  • Martin, R. D., 1982, Allometric approaches to the evolution of the primate nervous system, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 39–56.

    Chapter  Google Scholar 

  • Martin, R. D., and Harvey, P. H., 1985, Brain size, allometry: Ontogeny and phylogeny, in: Size and Scaling in Primate Biology ( W. Jungers, ed.), Plenum Press, New York, pp. 147–173.

    Google Scholar 

  • Meisami, E., and Brazier, M. A. B., 1979, Neural Growth and Differentiation, Raven Press, New York.

    Google Scholar 

  • Merritt, H. H., 1959, Developmental defects, in: A Textbook of Neurology, Lea & Febiger, Philadelphia, pp. 390–410.

    Google Scholar 

  • Merzenich, M. M., 1982, Organization of primate sensory forebrain structures: A new perspective, in: New Perspectives in Cerebral Localization ( R. A. Thompson and J. R. Green, eds.), Raven Press, New York, pp. 47–62.

    Google Scholar 

  • Merzenich, M. M., 1985, Sources of intraspecies and interspecies cortical map variability in mammals, in: Comparative Neurobiology: Modes of Communication in the Nervous System ( M. J. Cohen and F. Strumwasser, eds.), Wiley—Interscience, New York, pp. 105–116.

    Google Scholar 

  • Merzenich, M. M., Recanzone, G., Jenkins, W. M., Allard, T. T., and Nudo, R. J., 1988, Cortical representational plasticity, in: Neurobiology of Neocortex ( P. Rakic and W. Singer, eds.), Wiley, New York, pp. 41–67.

    Google Scholar 

  • Mesulam, M.-M., and Mufson, E. J., 1985, The insula of Reil in man and monkey. Architectonics, connectivity and function, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 179–226.

    Google Scholar 

  • Mettler, F. A., 1933, Brain of Pithecus Rhesus (M. Rhesus), Am. J. Phys. Anthropol. 17: 309–331.

    Article  Google Scholar 

  • Meulders, M., Gybels, J, Bergmans, J., Gerebtzoff, M. A., and Goffart, M., 1966, Sensory projections of somatic, auditory and visual origin to the cerebral cortex of the sloth (Choloepus hoffmanni Peters), J. Comp. Neurol. 126: 535–546.

    PubMed  CAS  Google Scholar 

  • Meyer, A., 1971, Historical Aspects of Cerebral Anatomy, Oxford University Press, London.

    Google Scholar 

  • Meyer, H. H., 1937, Die Massen- und Oberflächen-Entwicklung des fetalen Gehirns, Virchow Arch. Pathol. Anat. Physiol. 300: 202–224.

    Article  Google Scholar 

  • Millen, J. W, and WooUam, D. H. M., 1959, Observations on the experimental production of malformations of the central nervous system, J. Ment. Defic. Res. 3: 23–32.

    PubMed  CAS  Google Scholar 

  • Miller, G. S., Jr., 1923, The telescoping of the cetacean skull, Smithson. Misc. Collect. 76: 1–71.

    Google Scholar 

  • Miller, M. W, 1988, Development of projection and local circuit neurons in neocortex, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G. Peters, eds.), Plenum Press, New York, pp. 133–175.

    Chapter  Google Scholar 

  • Minkowski, A. (ed.), 1967, Regional Development of the Brain in Early Life, Blackwell, Oxford.

    Google Scholar 

  • Miodoński, A., 1974, The angioarchitectonics and cytoarchitectonics (impregnation Modo Golgi-Cox) structure of the fissurai frontal neocortex in dog, Folia Biol. 22: 237–279.

    Google Scholar 

  • Mitra, N. L., 1955, Quantitative analysis of cell types in mammalian neo-cortex, J. Anat. 89: 467–483.

    PubMed  CAS  Google Scholar 

  • Mizuno, N., Konishi, A., Sato, M., Kawaguchi, S., Yamamoto, T., Kawamura, S., and Yamawaki, M., 1975, Thalamic afférents to the rostral portions of the middle suprasylvian gyrus in the cat, Exp. Neurol. 48: 79–87.

    Article  PubMed  CAS  Google Scholar 

  • Montero, V. M., 1981, Topography of the cortico-cortical connections from the striate cortex in the cat, Brain Behau Evol. 18: 194–218.

    Article  CAS  Google Scholar 

  • Montero, V. M., 1982, Comparative studies on the visual cortex, in: Cortical Sensory Organization, Volume 2 ( C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 33–81.

    Google Scholar 

  • Moodie, R. L., 1922, On the endocranial anatomy of some Oligocene and Pleistocene mammals, J. Comp. Neurol. 34: 343–379.

    Article  Google Scholar 

  • Morel, F., and Wildi, E., 1952, Dysgénésie nodulaire disséminée de l’écorce frontale, Rev. Neurol. 87: 251–270.

    PubMed  CAS  Google Scholar 

  • Morgane, P. J., and Jacobs, M. S., 1973, Comparative anatomy of the cetacean nervous system, in: Functional Anatomy of Marine Mammals ( R.J. Harrison, ed.), Academic Press, New York, pp. 117–244.

    Google Scholar 

  • Morgane, P. J., Jacobs, M. S., and Galaburda, A., 1985, Conservative features of neocortical evolution in dolphin brain, Brain Behav. Evol. 26: 176–184.

    Article  PubMed  CAS  Google Scholar 

  • Morgane, P. J., Jacobs, M. S., and Galaburda, A., 1986, Evolutionary morphology of the dolphin brain, in: Dolphin Cognition and Behavior: A Comparative Approach ( R. J. Schusterman, J. A. Thomas, and F. G. Wood, eds.), Erlbaum, Hillsdale, N.J., pp. 5–29.

    Google Scholar 

  • Moss, M. L., 1957, Experimental alteration of sutural area morphology, Anat. Ree. 127: 569–589.

    Article  CAS  Google Scholar 

  • Moss, M. L., 1960, Inhibition and stimulation of sutural fusion in the rat calvaría, Anat. Ree. 136: 457–467.

    Article  CAS  Google Scholar 

  • Moss, M. L., and Young, R. W., 1960, A functional approach to craniology, Am. J. Phys. Anthropol. 18: 281–292.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., 1978, Organizing principle for cerebral function: The unit module and the distributed system, in: The Mindful Brain ( G. M. Edelman and V. B. Mountcastle, eds.), MIT Press, Cambridge, Mass., pp. 7–50.

    Google Scholar 

  • Myers, R. E., 1976, Comparative neurology of vocalization and speech: Proof of a dichotomy, in: Origins and Evolution of Language and Speech ( S. R. Harnad, H. D. Steklis, and J. Lancaster, eds.), New York Academy of Sciences, New York, pp. 745–757.

    Google Scholar 

  • Myers, R. E., Valerio, M. G., Martin, D. P., and Nelson, K. B., 1973, Perinatal brain damage: Prosencephaly in a cynomolgous monkey, Biol. Neonate 22: 253–273.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. J., Sur, M., and Kaas, J. H., 1979, The organization of the second somatosensory area (SmII) of the grey squirrel, J. Comp. Neurol. 184: 473–490.

    Article  PubMed  CAS  Google Scholar 

  • Neubauer, G., 1925, Experimentelle Untersuchungen über die Beeinflussung der Schädelform, Z. Morphol. Anthropol. 22: 411–442.

    Google Scholar 

  • Ngowyang, G., 1934, Cytoarchitektonik des menschlichen stirnhirns. Teil I. Cytoarchitektonische Felderung der Regio granularis and dysgranularis, Nat. Res. Inst. Psychol. Acad. Sin. Monogr. 7: 1–54.

    Google Scholar 

  • Noback, C. R., 1959, The heritage of the human brain (James Arthur lecture on the evolution of the human brain), pp. 1–30.

    Google Scholar 

  • Noback, C. R., and Demarest, R. J., 1975, The Human Nervous System: Basic Principles of Neurobiology, McGraw-Hill, New York.

    Google Scholar 

  • Noback, C. R., and Montagna, W., (eds.), 1970, The Primate Brain, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Noback, C. R., and Moss, M. L., 1956, Differential growth of the human brain, J. Comp. Neurol. 105: 539–552.

    Article  PubMed  Google Scholar 

  • Nomina Anatomica (5th ed.), 1983, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Northcutt, R. G., 1981, Evolution of the telencephalon in nonmammals, Annu. Rev. Neurosci. 4: 301–351.

    Article  PubMed  CAS  Google Scholar 

  • Northeutt, R. G., 1984, Evolution of vertebrate central nervous system: Patterns and processes, Am. Zool. 24: 701–716.

    Google Scholar 

  • Northeutt, G. R., 1985, Brain phylogeny. Speculations on pattern and cause, in: Comparative Neurobiology: Modes of Communication in the Nervous System ( M. J. Cohen and F. Strumwasser, eds.), Wiley, New York, pp. 351–378.

    Google Scholar 

  • Obersteiner, H., 1890, The fissures and convolutions on the surface of the great brain, in: The Anatomy of the Central Nervous Organs in Health and Disease, Griffin, London, pp. 84–106.

    Google Scholar 

  • Oboussier, H., 1949, Über Unterschiede des Hirnfurchenbildes beim Hunde, Verh. Dtsch. Zool. Mainz 8: 109–114.

    Google Scholar 

  • Oboussier, H., 1950, Zur Frage der Erblichkeit der Hirnfurchen. Untersuchungen an Kreuzungen extremer Rassetypen des Hundes, Z. Menschl. Vererb. Konstit. lehre 29: 831–864.

    Google Scholar 

  • Oboussier, H., 1972, Evolution of the mammalian brain. Some evidence on the phylogeny of the antelope species, Acta Anat. 83: 70–80.

    Article  PubMed  CAS  Google Scholar 

  • Olson, C. R., and Graybiel, A. M., 1987, Ectosylvian visual area of the cat: Location, retinotopic organization, and connections, J. Comp. Neurol. 261: 277–294.

    Article  PubMed  CAS  Google Scholar 

  • Olson, E. C., 1976, Rates of evolution of the nervous system and behavior, in: Evolution, Brain, and Behavior: Persistent Problems ( R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 47–77.

    Google Scholar 

  • Owen, R., 1868, On the Anatomy of Vertebrates, Volume 3, Longmans, Green, London.

    Google Scholar 

  • Packer, A. D., 1949, A comparison of endocranial cast and brain of an Australian aborigine, J. Anat. 83: 195–204.

    Google Scholar 

  • Palade, G. E., 1985, Differentiated microdomains in cellular membranes: Current status, in: The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants ( G. M. Edelman and J.-P. Thiery, eds.), Wiley, New York, pp. 9–24.

    Google Scholar 

  • Pandya, D. N., and Sanides, F., 1973, Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern, Z. Anat. Entwicklungsgesch. 139: 127–161.

    Article  CAS  Google Scholar 

  • Pandya, D. N., and Yeterian, E. H., 1985, Architecture and connections of cortical association areas, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 3–61.

    Google Scholar 

  • Papez, J. W, 1929, Comparative Neurology: A Manual and Text for the Study of the Nervous System of Vertebrates, Hafner, New York.

    Google Scholar 

  • Papez, J. W., and Hunter, R. P., 1929, Formation of a central sulcus in the brain of the raccoon, Anat. Rec. 42: 60 (abstract).

    Google Scholar 

  • Passingham, R. E., 1985, Rates of brain development in mammals including man, Brain Behav. Evol. 26: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Patten, B. M., 1968, Human Embryology, 3rd ed., McGraw-Hill, New York.

    Google Scholar 

  • Paul, R. L., Merzenich, M., and Goodman, H., 1972, Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta, Brain Res. 36: 229–249.

    CAS  Google Scholar 

  • Payne, B., Pearson, H., and Cornwell, P., 1988, Development of visual and auditory cortical connections in the cat, in: Cerebral Cortex, Volume 7 ( A. Peters and E. G.Jones, eds.), Plenum Press, New York, pp. 309–389.

    Chapter  Google Scholar 

  • Pearson, R., and Pearson, L., 1976, The Vertebrate Brain, Academic Press, New York.

    Google Scholar 

  • Peters, A., and Jones, E. G., 1984, Classification of cortical neurons, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 107–121.

    Google Scholar 

  • Peters, R. H., 1983, The Ecological Implications of Body Size, Cambridge University Press, London.

    Book  Google Scholar 

  • Petras, J. M., Noback, C.R., 1969, Comparative and evolutionary aspects of the vertebrate central nervous system, Ann. N.Y. Acad. Sci. 167.

    Google Scholar 

  • Pickering, S. P., 1930, Correlation of brain and head measurements, and relation of brain shape and size to shape and size of the head, Am. J. Phys. Anthropol. 15: 1–52.

    Article  Google Scholar 

  • Pilbeam, D., and Gould, S. J., 1974, Size and scaling in human evolution, Science 186: 892–901.

    Article  PubMed  CAS  Google Scholar 

  • Pilleri, G., 1959, The brains of Dolichotis patagona and Hydrochoerus hydrochoerus, with suggestions about endocranial relationships, Acta Zool. 40: 43–58.

    Article  Google Scholar 

  • Pimentel-Souza, F., Cosenza, R. M., Campos, G. B., and Johnson, J. I., 1980, Somatic sensory cortical regions of the agouti Dasyprocta aguti, Brain Behav. Evol. 17: 218–240.

    Article  PubMed  CAS  Google Scholar 

  • Pinto Hamuy, T., Bromiley, R. G., and Woolsey, C. N., 1956, Somatic afferent areas I and II of dog’s cerebral cortex, J. Neurophysiol. 19: 485–499.

    PubMed  Google Scholar 

  • Pirlot, P., 1986, Understanding taxa by comparing brains, Perspect. Biol. Med. 29: 499–509.

    Google Scholar 

  • Polyak, S., 1957, The Vertebrate Visual System (edited by H. Kluver), University of Chicago Press, Chicago.

    Google Scholar 

  • Powell, T. P. S., and Mountcastle, V. B., 1959a, Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture, Bull. Johns Hopkins Hosp. 105: 133–162.

    PubMed  CAS  Google Scholar 

  • Powell, T. P. S., and Mountcastle, V. B., 1959b, The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta, Bull. Johns Hopkins Hosp. 105: 108–131.

    PubMed  CAS  Google Scholar 

  • Probst, F. P., 1979, The Prosencephalies: Morphology, Neuroradiological Appearances and Differential Diagnosis, Springer-Verlag, Berlin.

    Google Scholar 

  • Prothero, J., 1986, Methodological aspects of scaling in biology, J. Theor. Biol. 118: 259–286.

    Article  PubMed  CAS  Google Scholar 

  • Prothero, J. W., and Sundsten, J. W., 1984, Folding of the cerebral cortex in mammals. A scaling model, Brain Behav. Evol. 24: 152–167.

    Article  PubMed  CAS  Google Scholar 

  • Pubols, B. H., Jr., and Pubols, L. M., 1979, Variations in the fissurai pattern of the cerebral neocortex of the spider monkey (Ateles), Brain Behav. Evol. 16: 241–252.

    Article  PubMed  Google Scholar 

  • Pubols, B. H., Jr., Pubols, L. M., DiPette, D. J., and Sheely, J. C., 1976, Opossum somatic sensory cortex: a microelectrode mapping study, J. Comp. Neurol. 165: 229–246.

    Article  PubMed  Google Scholar 

  • Purves, D., 1988, Body and Brain: A Trophic Theory of Neural Connections, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Purves, D., and Lichtman, J. W., 1985, Principles of Neural Development, Sinauer, Sunderland, Mass.

    Google Scholar 

  • Radinsky, L., 1967, Relative brain size: A new measure, Science 155: 836–837.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1968a, Evolution of somatic sensory specialization in otter brains, J. Comp. Neurol. 134: 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1968b, A new approach to mammalian cranial analysis, illustrated by examples of prosimian primates, J. Morphol. 124: 167–180.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L. B., 1968c, Otter brains, J. Comp. Neurol. 134: 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1969, Outlines of canid and felid brain evolution, Ann. N.Y. Acad. Sci. 167: 277–288.

    Article  Google Scholar 

  • Radinsky, L., 1970, The fossil evidence of prosimian brain evolution, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 209–224.

    Google Scholar 

  • Radinsky, L., 1971, An example of parallelism in carnivore brain evolution, Evolution 25: 518–522.

    Article  Google Scholar 

  • Radinsky, L., 1972, Endocasts and studies of primate brain evolution, in: The Functional and Evolutionary Biology of Primates ( R. Tuttle, ed.), Aldine-Atherton, Chicago, pp. 175–186.

    Google Scholar 

  • Radinsky, L., 1973a, Aegyptopithecus endocasts: Oldest record of a pongid brain, Am. J. Phys. Anthropol. 39: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1973b, Are stink badgers skunks? Implications of neuroanatomy for mustelid phylogeny, J. Mammol. 54: 585–593.

    Article  Google Scholar 

  • Radinsky, L., 1973c, Evolution of the canid brain, Brain Behav. Evol. 7: 169–202.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1974, Prosimian brain morphology: Functional and phylogenetic implications, in: Prosimian Biology ( R. D. Martin, G. A. Doyle, and A. C. Walker, eds.), Duckworth, London, pp. 781–798.

    Google Scholar 

  • Radinsky, L., 1975a, Evolution of the felid brain, Brain Behav. Evol. 11: 214–254.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1975b, Primate brain evolution, Am. Sci. 63: 656–663.

    PubMed  CAS  Google Scholar 

  • Radinsky, L., 1975c, Viverrid neuroanatomy: Phylogenetic and behavioral implications, J. Mammol. 56: 130–150.

    Article  CAS  Google Scholar 

  • Radinsky, L., 1976a, The brain of Mesonyz, a middle Eocene mesonychid condylarth, Fieldiana Geol. 33: 323–337.

    Google Scholar 

  • Radinsky, L., 1976b, Cerebral clues, Nat. Hist. 85: 54–59.

    Google Scholar 

  • Radinsky, L., 1976c, New evidence of ungulate brain evolution, Am. Zool. 16: 207.

    Google Scholar 

  • Radinsky, L., 1976d, Oldest horse brains: More advanced than previously realized, Science 194: 626–627.

    Article  PubMed  CAS  Google Scholar 

  • Radinsky, L., 1977a, Brains of early carnivores, Paleobiology 3: 333–349.

    Google Scholar 

  • Radinsky, L., 1977b, Early primate brains: Facts and fiction, J. Hum. Evol. 6: 79–86.

    Article  Google Scholar 

  • Radinsky, L., 1978, Evolution of brain size in carnivores and ungulates, Am. Nat. 112: 815–831.

    Article  Google Scholar 

  • Radinsky, L., 1979, The Fossil Record of Primate Brain Evolution, American Museum of Natural History, New York, pp. 1–27.

    Google Scholar 

  • Radinsky, L., 1980, Endocasts of amphicyonid carnivorans, Am. Mus. Novit. 2694: 1–11.

    Google Scholar 

  • Radinsky, L., 1981, Brain evolution in extinct South American ungulates, Brain Behau Evol. 18: 169–187.

    Article  CAS  Google Scholar 

  • Radinsky, L., 1982, Some cautionary notes on making inferences about relative brain size, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 29–37.

    Chapter  Google Scholar 

  • Rakic, P., 1974, Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition, Science 183: 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1975a, Local circuit neurons, Neurosci. Res. Progr. Bull. 13: 290–446.

    Google Scholar 

  • Rakic, P., 1975b, Timing of major ontogenetic events in the visual cortex of the rhesus monkey, in: Brain Mechanisms in Mental Retardation ( N. A. Buchwald and M. A. B. Brazier, eds.), Academic Press, New York, pp. 3–40.

    Google Scholar 

  • Rakic, P., 1976, Differences in the time of origin and in eventual distribution in areas 17 and 18 of visual cortex in rhesus monkey, in: Afferent and Intrinsic Organization of Laminated Structures in the Brain ( O. Creutzfeldt, ed.), Springer-Verlag, Berlin, pp. 244–248.

    Chapter  Google Scholar 

  • Rakic, P., 1978, Neuronal migration and contact guidance in the primate telencephalon, Postgrad. Med. J. 54: 25–40.

    PubMed  Google Scholar 

  • Rakic, P., 1979, Genetic and epigenetic determinants of local neuronal circuits in the mammalian central nervous system, in: The Neurosciences: Fourth Study Program ( F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, Mass., pp. 109–127.

    Google Scholar 

  • Rakic, P., 1981, Developmental events leading to laminar and areal organization of the neocortex, in: The Organization of the Cerebral Cortex: Proceedings of a Neurosciences Research Program Colloquium ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, Mass., pp. 7–28.

    Google Scholar 

  • Rakic, P., 1985, Contact regulation of neuronal migration, in: The Cell in Contact: Adhesion and Junctions as Morphogenetic Determinants ( G. M. Edelman and J.-P. Thiery, eds.), Wiley, New York, pp. 67–91.

    Google Scholar 

  • Rakic, P., 1988, Specification of cerebral cortical areas, Science 241: 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., and Goldman-Rakic, P. S. 1982, Development and modifiability of the cerebral cortex, Neurosci. Res. Progr. Bull. 20: 427–611.

    Google Scholar 

  • Rakic, P., and Yakovlev, P. I., 1968, Development of the corpus callosum and cavum septi in man, J. Comp. Neurol. 132: 45–72.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., Bourgeois, J.-R, Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P. S., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.

    Article  PubMed  CAS  Google Scholar 

  • Ranke, O., 1910, Beiträge zur Kenntnis der normalen und pathologischen Hirnrindenbildung, Beitr. Pathol. Anat. 47: 51–125.

    Google Scholar 

  • Rasmussen, A. T., 1947, Some Trends in Neuroanatomy, Brown, Dubuque, Iowa.

    Google Scholar 

  • Ray, R. H., and Craner, S. L., 1988, The development of the topographic organization of the sensory cortices of the neonatal pig, Soc. Neurosci. Abstr. 14: 224.

    Google Scholar 

  • Reep, R. L., and Goodwin, G. S., 1988, Layer VII of rodent cerebral cortex, Neurosci. Lett. 90: 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Reinoso-Suárez, F., 1984, Connectional patterns in parietotemporooccipital association cortex of the feline cerebral cortex, in: Cortical Integration ( F. Reinoso-Suárez and C. Ajmone-Marsan, eds.), Raven Press, New York, pp. 255–278.

    Google Scholar 

  • Reinoso-Suárez, F., and Ajmone-Marsan, C. (eds.), 1984, Cortical Integration. Basic, archicortical, and Cortical Association Levels of Neural Integration, Raven Press, New York.

    Google Scholar 

  • Rensch, B., 1948, Histological changes correlated with evolutionary changes of body size, Evolution 2: 218–230.

    Article  PubMed  CAS  Google Scholar 

  • Retzius, A., 1891, Ueber den Bau der Oberflachenschicht der Grosshirnrinde beim Menschen und bei den Säugethieren, Verh. Biol. Ver. 3: 90–103.

    Google Scholar 

  • Richman, D. P., Stewart, R. M., and Caviness, V. S., Jr., 1973, Microgyria, lissencephaly, and neuron migration to the cerebral cortex: An architectonic approach, Proc. Am. Acad. Neurol. 23: 413.

    Google Scholar 

  • Richman, D. P., Stewart, R. M., and Caviness, V. S., Jr., 1974, Cerebral microgyria in a 27-week fetus: An architectonic and topographic analysis, J. Neuropathol. Exp. Neurol. 33: 374–399.

    Article  PubMed  CAS  Google Scholar 

  • Richman, D. P., Stewart, R. M., Hutchinson, J. W., and Caviness, V. S., Jr., 1975, Mechanical model of brain convolutional development. Pathologic and experimental data suggest a model based on differential growth within the cerebral cortex, Science 189: 18–21.

    Article  Google Scholar 

  • Rickmann, M., Chronwall, B. M., and Wolff, J. R., 1977, On the development of non-pyramidal neurons and axons outside the cortical plate: The early marginal zone as a palliai anlage, Anat. Embryol. 151: 285–307.

    Article  PubMed  CAS  Google Scholar 

  • Ridgway, S. H., 1986, Physiological observations on dolphin brains, in: Dolphin Cognition and Behavior: A Comparative Approach ( R. J. Schusterman, J. A. Thomas, and F. G. Wood, eds.), Erlbaum, Hillsdale, N.J., pp. 31–59.

    Google Scholar 

  • Riley, F., and Riley, H. A., 1921, The Form and Functions of the Central Nervous System: An Introduction to the Study of Nervous Diseases, Hoeber, New York.

    Google Scholar 

  • Roberts, M. P., Hanaway, J., and Morest, D. K., 1987, Atlas of the Human Brain in Section, 2nd ed., Lea & Febiger, Philadelphia.

    Google Scholar 

  • Roberts, T. S., and Akert, K., 1963, Insular and opercular cortex and its thalamic projection in Macaca mulatta, Schweiz. Arch. Neurol. Neurochir. Psychiatr. 92: 1–43.

    PubMed  CAS  Google Scholar 

  • Rockel, A. J., Hiorns, R. W, and Powell, T. P. S., 1980, The basic uniformity in the structure of the neocortex, Brain 103: 221–244.

    Article  PubMed  CAS  Google Scholar 

  • Romer, A. S., and Edinger, T., 1942, Endocranial casts and brains of living and fossil amphibia, J. Comp. Neurol. 77: 355–389.

    Article  Google Scholar 

  • Rose, J. E., 1949, The cellular structure of the auditory region of the cat, J. Comp. Neurol. 91: 409–440.

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. E., and Woolsey, C. N., 1949, The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat, J. Comp. Neurol. 91: 441–466.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M., 1928, Die Inselrinde des Menschen und der Tiere, J. Psychol. Neurol. 37: 467–624.

    Google Scholar 

  • Rosenquist, A. C., 1985, Connections of visual cortical areas in the cat, in: Cerebral Cortex, Volume 3 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 81–117.

    Google Scholar 

  • Rubel, W. W., 1971, A comparison of somatotopic organization in sensory neocortex of newborn kittens and adult cats, J. Comp. Neurol. 143: 447–480.

    Article  PubMed  CAS  Google Scholar 

  • Rubens, A. B., 1977, Anatomical asymmetries of human cerebral cortex, in: Lateralization in the Nervous System ( S. Harnad, R. W. Doty, L. Goldstein, J. Jaynes, and G. Krauthamer, eds.), Academic Press, New York, pp. 503–516.

    Google Scholar 

  • Rubinstein, H. S., 1934, The relation of brain weight to body size. The mathematical basis for the Dubois formula, Bull. School Med (Univ. Maryland) 19: 1–4.

    Google Scholar 

  • Sacher, G. A., 1970, Allometric and factorial analysis of brain structure in insectivores and primates, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 245–287.

    Google Scholar 

  • Sacher, G. A., 1982, The role of brain maturation in the evolution of the primates, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 97–112.

    Chapter  Google Scholar 

  • Sakai, S. T., 1982, The thalamic connectivity of the primary motor cortex (MI) in the raccoon, J. Comp. Neurol. 204: 238–252.

    Article  PubMed  CAS  Google Scholar 

  • Sanides, F., 1962, Die Architektonik des Menschlichen Stirnhirns. Zugleich eine Darstellung der Prinzipien seiner Gestaltung al Spiegel der Stammesgeschichtlichen Differenzierung der Grosshirnrinde, Gesamtgebiete Neurol. Psychiatr. (Monogr.) 98.

    Google Scholar 

  • Sanides, F., 1964, The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex, J. Hirnforsch. 6: 269–282.

    Google Scholar 

  • Sanides, F., 1969a, Comparative architectonics of the neocortex of mammals and their evolutionary interpretation, Ann. N.Y. Acad. Sci. 167: 404–423.

    Article  Google Scholar 

  • Sanides, F., 1969b, Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices, J. Hirnforsch. 11: 79–104.

    PubMed  CAS  Google Scholar 

  • Sanides, F., 1970a, Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 137–208.

    Google Scholar 

  • Sanides, F., 1970b, Evolutionary aspect of the primate neocortex, Proc. 3rd Int. Congr. Primat. (Zurich) 1: 92–98.

    Google Scholar 

  • Sanides, F., 1975, Comparative neurology of the temporal lobe in primates including man with reference to speech, Brain Lang. 2: 396–419.

    Article  PubMed  CAS  Google Scholar 

  • Sanides, F., and Krishnamurti, A., 1967, Cytoarchitectonic subdivisions of sensorimotor and prefrontal regions and of bordering insular and limbic fields in slow loris (Nycticebus coucang coucang), J. Hirnforsch. 9: 225–252.

    PubMed  CAS  Google Scholar 

  • Santee, H. E., 1914, The brain of a black monkey, Macacus maurus: The relative prominence of different gyri, Anat. Rec. 8: 257–266.

    Article  Google Scholar 

  • Saraiva, P. E. S., and Magalhäes-Castro, B., 1975, Sensory and motor representation in the cerebral cortex of the three-toed sloth (Bradypus tridactylus), Brain Res. 90: 181–193.

    Article  PubMed  CAS  Google Scholar 

  • Sarkissov, S. A., Filimonoff, I. N., Kononowa, W. P., Preobraschenskaja, I. S., and Kukuew, L. A., 1955, Atlas of the Cytoarchitectonics of the Human Cerebral Cortex, Medgiz., Moscow.

    Google Scholar 

  • Sawaguchi, T., 1988, Correlations of cerebral indices for ‘extra’ cortical parts and ecological variables in primates, Brain Behav. Evol. 32: 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer, K., 1918a, Über normale und pathologische Hirnfurchung, Z. Gesamte Neurol. Psychiatr. 38: 1–78.

    Article  Google Scholar 

  • Schaffer, K., 1918b, Zum Mechanismus der Furchenbildung, Z. Gesamte Neurol. Psychiatr. 38: 79–84.

    Article  Google Scholar 

  • Schaffer, K., 1923, Histogenese der Hirnfurchung, Z. Anat. Entwicklungsgesch. 69: 467–482.

    Article  Google Scholar 

  • Schaltenbrand, G., and Woolsey, C. N., (eds.), 1964, Cerebral Localization and Organization, University of Wisconsin Press, Madison.

    Google Scholar 

  • Schiller, F., 1965, The rise of the “enteroid processes” in the 19th century: Some landmarks in cerebral nomenclature, Bull Hist. Med. 39: 326–338.

    PubMed  CAS  Google Scholar 

  • Schmidt, F., 1862, Beiträge zur Entwicklungsgeschichte des Gehirns, Z. Wiss. Zool. 11: 43–61.

    Google Scholar 

  • Schmidt-Nielsen, K., 1984, Scaling: Why Is Animal Size so Important? Cambridge University Press, London.

    Google Scholar 

  • Schmitt, F. O., Worden, F. G., Adelman, G., and Dennis, S. G. (eds.), 1981, The Organization of the Cerebral Cortex: Proceedings of a Neuroscience Research Program Colloquium, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Scollo-Lavizzari, G., and Akert, K., 1963, Cortical area 8 and its thalamic projection in Macaca mulatta, J. Comp. Neurol. 121: 259–269.

    CAS  Google Scholar 

  • Seitz, J., 1887, Ueber die Bedeutung der Gehirnfurchung, Jahrb. Psychiatr. Neurol. 7: 225–288.

    Google Scholar 

  • Seltzer, B., and Pandya, D. N., 1978, Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in rhesus monkey, Brain Res. 149: 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Sessle, B. J., and Wiesendanger, M., 1982, Structural and functional definition of the motor cortex in the monkey (Macaca fascicularis), J. Physiol. (London) 323: 245–265.

    CAS  Google Scholar 

  • Shanks, M. F., Rockel, A. J., and Powell, T. P. S., 1975, The commissural fibre connections of the primary somatic sensory cortex, Brain Res. 98: 166–171.

    Article  PubMed  CAS  Google Scholar 

  • Shariff, G. A., 1953, Cell counts in the primate cerebral cortex, J. Comp. Neurol. 98: 381–400.

    Article  PubMed  CAS  Google Scholar 

  • Shellshear, J. L., 1927, The evolution of the parallel sulcus, J. Anat. 61: 268–279.

    Google Scholar 

  • Sherk, H., 1986, The claustrum and the cerebral cortex, in: Cerebral Cortex, Volume 5 ( E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 467–499.

    Google Scholar 

  • Sholl, D. A., 1948, The quantitative investigation of the vertebrate brain and the applicability of allometric formulae to its study, Proc. R. Soc. London (Biol.) 135: 243–258.

    Article  Google Scholar 

  • Sholl, D. A., 1956, The Organization of the Cerebral Cortex, Wiley, New York.

    Google Scholar 

  • Sholl, D. A., 1960, Anatomical heterogeneity in the cerebral cortex, in: Structure and Function of the Cerebral Cortex ( D. B. Tower and J. P. Schadé, eds.), Elsevier, Amsterdam, pp. 21–27.

    Google Scholar 

  • Sidman, R. L., and Rakic, P., 1973, Neuronal migration, with special reference to developing human brain: A review, Brain Res. 62: 1–35.

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R. L., and Rakic, P., 1982, Development of the human nervous system in: Histology and Histopathology of the Nervous System (W. Haymaker and R. D. Adams, eds.), Thomas, Springfield, 111, pp. 3–145.

    Google Scholar 

  • Sievers, J., and Raedler, A., 1981, Light and electron microscopical studies on the development of horizontal cells of Cajal-Retzius, Bibl. Anat. 19: 161–166.

    PubMed  Google Scholar 

  • Simpson, G. G., 1961, Principles of Animal Taxonomy, Columbia University Press, New York.

    Google Scholar 

  • Siuta, J., 1967, Preliminary allometric studies on the fissurai cortex, Acta Biol. Cracov. Ser. Zool. 10: 227–231.

    Google Scholar 

  • Smart, I. H. M., and McSherry, G. M., 1986a, Gyrus formation in the cerebral cortex of the ferret. I. Description of the external changes, J. Anat. 146: 141–152.

    PubMed  CAS  Google Scholar 

  • Smart, I. H. M., and McSherry, G. M., 1986b, Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes, J. Anat. 147: 27–43.

    PubMed  CAS  Google Scholar 

  • Smith, G. E., 1902a, Descriptive and illustrated catalogue of the physiological series of comparative anatomy contained in the Museum of the Royal College of Surgeons of England, 2nd ed., Taylor & Francis, London.

    Google Scholar 

  • Smith, G. E., 1902b, On the homologies of the cerebral sulci, J. Anat. Physiol. 36: 309–319.

    PubMed  CAS  Google Scholar 

  • Smith, G. E., 1902c, X. On the morphology of the brain in the Mammalia, with special reference to that of the lemurs, recent and extinct, Trans. Linn. Soc. (Biol.) 8: 319–432.

    Article  Google Scholar 

  • Smith, G. E., 1907a, New studies on the folding of the visual cortex and the significance of the occipital sulci in the human brain, J. Anat. 41: 198–207.

    CAS  Google Scholar 

  • Smith, G. E., 1907b, A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci, J. Anat. Physiol. 61: 237–254.

    Google Scholar 

  • Smith, G. E., 1929, The variations in the folding of the visual cortex in man, in: Contributions to Psychiatry, Neurology and Sociology (Dedicated to the Late Sir Frederick Mott), Lewis, London, pp. 57–66.

    Google Scholar 

  • Smith, G. E., 1931, The central nervous system, in: Cunningham’s Textbook of Anatomy (A. Robinson, ed.), Oxford University Press, London, pp. 505–679.

    Google Scholar 

  • Smith, R. J., 1985, The present as a key to the past: Body weight of Miocene hominids as a test of allomeric methods for paleontological inference, in: Size and Scaling in Primate Biology ( W. L. Jungers, ed.), Plenum Press, New York, pp. 437–448.

    Google Scholar 

  • Snell, O., 1891, Abhängigkeit des Hirngewichtes von dem Korpergewicht und den geistigen Fähigkeiten, Arch. Psychiatr. Nervenkr. 23: 436–446.

    Article  Google Scholar 

  • Starck, D., 1963, Morphologische Untersuchungen am Kopf der Säugetiere, besonders der Prosimier, ein Beitrag zum Problem des Formwandels des Säugerschädels, Z. Wiss. Zool. 157: 169–219.

    Google Scholar 

  • Stephan, H., 1954, Vergleichend-anatomische Untersuchungen an Hirnen von Wild- und Haustieren. IL Die oberfläschen des Allocortex bei Wild-und Hausform von Epimys norvegicus Erxl, G. Morphol. Jahrb. 93s: 125–471.

    Google Scholar 

  • Stephan, H., 1960, Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns, Z. Wiss. Zool. 164: 143–172.

    Google Scholar 

  • Stephan H., Bauchot, R., and Andy, O. J., 1970, Data on size of the brain and of various brain parts in insectivores and primates, in: The Primate Brain ( C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 289–297.

    Google Scholar 

  • Stephan, H., Frahm, H. D., and Stephan, M., 1982, Comparison of brain structure volumes in Insectívora and Primates, J. Hirnforsch. 23: 375–389.

    PubMed  Google Scholar 

  • Stephan H., Baron, G., Frahm, H. D., and Stephan, M., 1986, Grossenvergleiche an Gehirnen und Hirnstrukturen von Säugern, Z. Mikrosk. Anat. Forsch. 100: 189–212.

    PubMed  CAS  Google Scholar 

  • Steudel, K., 1985, Allometric perspectives on fossil catarrhine morphology, in: Size and Scaling in Primate Biology ( W. L. Jungers, ed.), Plenum Press, New York, pp. 449–475.

    Google Scholar 

  • Stewart, R. M., Richman, D. P., and Caviness, V. S., Jr., 1975, Lissencephaly and pachygyria. An architectonic and topographical analysis, Acta Neuropathol. 31: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Strasburger, E. H., 1937, Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen. Teil I. Myeloarchitectonische Gliederung des Menschlishen Stirnhirn, J. Psychol. Neurol. 47: 461–491.

    Google Scholar 

  • Strick, P. L., and Sterling, P., 1974, Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex. A light and electron microscope study, J. Comp. Neurol. 153: 77–106.

    Article  PubMed  CAS  Google Scholar 

  • Symington, J., 1915, On the relations of the inner surface of the cranium to the cranial aspect of the brain, Edinburgh Med. J. 14: 85–100.

    Google Scholar 

  • Symington, J., 1916, Endocranial casts and brain form: A criticism of some recent speculations, J. Anat. Physiol. 50: 111–130.

    PubMed  CAS  Google Scholar 

  • Symonds, L. L., and Rosenquist, A. C., 1984a, Corticocortical connections among visual areas in the cat, J. Comp. Neurol. 229: 1–38.

    Article  PubMed  CAS  Google Scholar 

  • Symonds, L. L., and Rosenquist, A. C., 1984b, Laminar origins of visual corticocortical connections in the cat, J. Comp. Neurol. 229: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Szentágothai, J., 1969, Architecture of the cerebral cortex, in: Basic Mechanisms of the Epilepsies ( H. H. Jasper, A. A. Ward, and A. Pope, eds.), Little, Brown, Boston, pp. 13–28.

    Google Scholar 

  • Tan, U., and Çalişkan, S. 1987, Asymmetries in the cerebral dimensions and fissures of the dog, Int. J. Neurosci. 32: 943–952.

    Article  PubMed  CAS  Google Scholar 

  • Temkin, O., 1947, Gall and the phrenological movement, Bull. Hist. Med. 21: 275–321.

    PubMed  CAS  Google Scholar 

  • Thatcher, R. W., Walker, R. A., and Guidice, S., 1987, Human cerebral hemispheres develop at different rates and ages, Science 236: 1110–1113.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, D. W, 1942 (new ed.), On Growth and Form, Macmillan & Co., London.

    Google Scholar 

  • Thompson, R. A., and Green, J. R. (eds.), 1982, New Perspectives in Cerebral Localization, Raven Press, New York.

    Google Scholar 

  • Thompson, R. A., and Green, R. (eds.), 1985, Prenatal Neurology and Neurosurgery, Spectrum, New York.

    Google Scholar 

  • Tizard, B., 1969, Theories of brain localization from Flourens to Lashley, Med. Hist. 3: 132–142.

    Article  Google Scholar 

  • Tobias, P. V., 1968, Cranial capacity in anthropoid apes, Australopithecus and Homo habilis, with comments on skewed samples, 5. Afr. J. Sci. 64: 81–91.

    Google Scholar 

  • Tobias, P. V., 1971, The Brain in Hominid Evolution, Columbia University Press, New York.

    Book  Google Scholar 

  • Todd, P. H., 1982, A geometric model for the cortical folding pattern of simple folded brains, J. Theor. Biol. 97: 529–538.

    Article  PubMed  CAS  Google Scholar 

  • Tömböl, T., 1984, Layer VI cells, in: Cerebral Cortex, Volume 1 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 479–519.

    Google Scholar 

  • Tower, D. B., 1954, Structural and functional organization of mammalian cerebral cortex: The correlation of neuron density with brain size, J. Comp. Neurol. 101: 19–51.

    Article  PubMed  CAS  Google Scholar 

  • Tower, D. B., and Schade, J. P. (eds.), 1960, Structure and Function of the Cerebral Cortex, Proceedings of the Second International Meeting of Neurobiologists, Amsterdam, 1959, Elsevier, Amsterdam.

    Google Scholar 

  • Turner, W, 1890, The convolutions of the brain: A study in comparative anatomy, J. Anat. Physiol. 25: 105–153.

    PubMed  CAS  Google Scholar 

  • Tusa, R. J., Palmer, L. A., and Rosenquist, A. C., 1982, Multiple cortical visual areas. Visual field topography in the cat, in: Cortical Sensory Organization, Volume 2 ( C. N. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 1–31.

    Google Scholar 

  • Uylings, H. B. M., Verwer, R. W. H., and Van Pelt, J., 1986, Morphometry and stereology in neurosciences, J. Neurosci. Methods 18.

    Google Scholar 

  • Valverde, F., 1985, The organizing principles of the primary visual cortex in the monkey, in: Cerebral Cortex, Volume 3 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 207–257.

    Google Scholar 

  • Valverde, F., 1986, Intrinsic neocortical organization: Some comparative aspects, Neuroscience 18: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Van der Loos, H., 1979, The development of topological equivalences in the brain, in: Neural Growth and Differentiation ( E. Meisami and M. A. B. Brazier, eds.), Raven Press, New York, pp. 331–336.

    Google Scholar 

  • Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.

    Google Scholar 

  • Van Essen, D. C., and Maunsell, J. H. R., 1980, Two-dimensional maps of the cerebral cortex, J. Comp. Neurol. 191: 255–281.

    Article  PubMed  Google Scholar 

  • Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.

    Article  PubMed  Google Scholar 

  • Vicario, D. S., Martin, J. H., and Ghez, C., 1983, Specialized subregions in the cat motor cortex: A single unit analysis in the behaving animal, Exp. Brain Res. 51: 351–367.

    Article  Google Scholar 

  • Vinken, P. J., Bruyn, G. W, and Myrianthopoulos, N., 1977, Congenital malformations of the brain and skull, in: Handbook of Clinical Neurology ( P.J. Vinken and G. W. Bruyn, eds.), North-Holland, Amsterdam (selected pages).

    Google Scholar 

  • Vogt, B. A., 1985, Cingulate cortex, in: Cerebral Cortex, Volume 4 ( A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 89–149.

    Google Scholar 

  • Vogt, O., 1910, Die myeloarchitektonische Felderung des menschlichen Stirnhirns, J. Psychol. Neurol. 15: 221.

    Google Scholar 

  • Vogt, O., 1923, Furchenbildung und architektonische Rindenfelderung, J. Psychol. Neurol. 29: 438.

    Google Scholar 

  • Vogt, O., 1943, Der heutige Stand der cerebralen Organologie und die zukünftige Hirnforschung, Anat. Anz. 94: 49–73.

    Google Scholar 

  • Volpe, J. J., 1987, Neurology of the Newborn, Saunders, Philadelphia, pp. 33–68.

    Google Scholar 

  • Wall, J. T., 1988, Development and maintenance of somatotopic maps of the skin: A mosaic hypothesis based on peripheral and central contiguities, Brain Behav. Evol. 31: 252–268.

    Article  PubMed  CAS  Google Scholar 

  • Warren, S., and Pubols, B. H., Jr., 1984, Somatosensory thalamocortical connections in the raccoon: An HRP study, J. Comp. Neurol. 227: 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Washburn, S. L., 1947, The relation of the temporal muscle to the form of the skull, Anat. Rec. 99: 239–248.

    Article  PubMed  CAS  Google Scholar 

  • Webster, D. B., 1976, On the comparative method of investigation, in: Evolution, Brain, and Behavior: Persistent Problems ( R. B. Masterton, W Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 1–11.

    Google Scholar 

  • Webster, W G., 1977, Hemispheric asymmetry in cats, in: Lateralization in the Nervous System ( S. Harnad, R. W. Doty, L. Goldstein, J. Jaynes, and G. Krauthamer, eds.), Academic Press, New York, pp. 471–480.

    Google Scholar 

  • Weibel, E. R. 1979, Stereological Methods. Practical Methods for Biological Morphometry, Academic Press, New York.

    Google Scholar 

  • Weidenreich, F., 1940, The brain and its role in the phylogenetic transformation of the human skull, Trans. Am. Philos. Soc. 31: 321–442.

    Google Scholar 

  • Weinberg, R., 1902, Die Interzentralbrücke der Carnivoren und der sulcus Rolandi, Anat. Anz. 22: 268–280.

    Google Scholar 

  • Weiss, P., 1955, Nervous system (neurogenesis), Section VII (special vertebrate organogenesis, in: Analysis of Development ( B. H. Willier, P. A., Weiss, and V. Hamburger, eds), Saunders, Philadelphia, pp. 346–401.

    Google Scholar 

  • Weiss, P., 1967, 1+1=2 (one plus one does not equal two), in: The Neurosciences (G. C. Quarton, T. Melnechuk, and F. O. Schmitt, eds.), Rockefeller University Press, New York, pp. 801–821.

    Google Scholar 

  • Weiss, P. A., 1970, Neural development in biological perspective, in: The Neurosciences: Second Study Program ( F. O. Schmitt, ed.), Rockefeller University Press, New York, pp. 53–61.

    Google Scholar 

  • Welker, W. I., 1976, Mapping the brain. Historical trends in functional localization, Brain Behav. Evol. 13: 327–343.

    Article  PubMed  CAS  Google Scholar 

  • Welker, W, 1990, The significance of foliation and fissuration of cerebellar cortex. The cerebellar folium as a fundamental unit of sensorimotor integration, Arch. Ital. Biol. 128: 87–109.

    PubMed  CAS  Google Scholar 

  • Welker, W. I., and Campos, G. B., 1963, Physiological significance of sulci in somatic sensory cortex of mammals of the family Procyonidae, J. Comp. Neurol. 120: 19–36.

    Article  PubMed  CAS  Google Scholar 

  • Welker, W I., and Carlson, M., 1976, Somatic sensory cortex of hyrax (Procavia), Brain Behav. Evol. 13: 294–301.

    CAS  Google Scholar 

  • Welker, W I., and Johnson, J. I., Jr., 1965, Correlation between nuclear morphology and somatotopic organization in ventro-basal complex of the raccoon’s thalamus, J. Anat. 99: 761–790.

    PubMed  CAS  Google Scholar 

  • Welker, W, and Lende, R. A., 1980, Thalamocortical relationships in echidna (Tachyglossus aculeatus), in: Comparative Neurobiology of the Telencephalon ( S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 449–481.

    Chapter  Google Scholar 

  • Welker, W I., and Seidenstein, S., 1959, Somatic sensory representation in the cerebral cortex of the raccoon (Procyon lotor), J. Comp. Neurol. 111: 469–501.

    Article  PubMed  CAS  Google Scholar 

  • Welker, W. I., Johnson, J. I., Jr., and Pubols, B. H., Jr., 1964, Some morphological and physiological characteristics of the somatic sensory system in raccoons, Am. Zool. 4: 75–96.

    PubMed  CAS  Google Scholar 

  • Welker, W I., Adrian, H. O., Lifschitz, W, Kaulen, R., Caviedes, E., and Gutman, W, 1976, Somatic sensory cortex of llama (Lama glama), Brain Behav. Evol. 13: 284–293.

    CAS  Google Scholar 

  • Weiler, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of areas 17 with visual areas V-II and MT in macaque monkeys, J. Comp. Neurol. 220: 253–279.

    Article  Google Scholar 

  • Weller, R. E., and Kaas, J. H., 1985, Cortical projections of the dorsolateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex, J. Comp. Neurol. 234: 35–59.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, H. A., and Seines, O. A., 1976, Anatomic variations in the cortex: Individual differences and the problem of the localization of language functions, in: Origins and Evolution of Language and Speech ( S. R. Harnad, H. D. Steklis, and J. Lancaster, eds.), New York Academy of Sciences, New York, pp. 844–854.

    Google Scholar 

  • Whitney, G., 1976, Genetic considerations in studies of the evolution of the nervous system and behavior, in: Evolution, Brain, and Behavior: Persistent Problems, ( R. B. Masterton, W. Hodos, and H. Jerison, eds.), Erlbaum, Hillsdale, N.J., pp. 79–106.

    Google Scholar 

  • Wiener, S. I., Johnson, J. I., and Ostapoff, E. M., 1987a, Mechanosensory projection zones in the ventrobasal thamalus of raccoons: Distributions of cytochrome oxidase activity, myelin, acetylcholinesterase activity and Nissl substance in electrophysiologically mapped tissues, J. Comp. Neurol. 258: 509–526.

    Article  PubMed  CAS  Google Scholar 

  • Wiener, S. I., Johnson, J. I., and Ostapoff, E. M., 1987b, Organization of postcranial kinesthetic projections to the ventrobasal thalamus in raccoons, J. Comp. Neurol. 258: 496–508.

    Article  PubMed  CAS  Google Scholar 

  • Wiesendanger, M., 1981, Organization of secondary motor areas of cerebral cortex, in: Handbook of Physiology, Section 1, Volume II, Part 1 ( M. Wiesendanger, ed.), American Physiological Society, Bethesda, pp. 1121–1147.

    Google Scholar 

  • Wilder, B. G., 1895, The cerebral fissures of two philosophers, Chauncy Wright and James Edward Oliver, J. Comp. Neurol. 5: 124–125.

    Article  Google Scholar 

  • Williams, R. S., Ferrante, R. J., and Caviness, V. S., Jr., 1976, The cellular pathology of microgyria. A Golgi analysis, Acta Neuropathol. 36: 269–283.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W, and Herrup, K., 1988, The control of neuron number, Annu. Rev. Neurosci. 11: 423–453.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W, Ryder, K., and Rakic, P., 1987, Emergence of cytoarchitectonic differences between areas 17 and 18 in the developing rhesus monkey, Soc. Neurosci. Abstr. 14: 1044.

    Google Scholar 

  • Willier, B. H., Weiss, P. A., and Hamburger, V., 1955, Analysis of Development, Saunders, Philadelphia.

    Google Scholar 

  • Wirz, K., 1950, Studien uber die Cerebralisation: Zur quantitativen Bestimmung der Rangordnung bei Säugetieren, Acta Anat. 9: 134–196.

    Article  PubMed  CAS  Google Scholar 

  • Wise, S. P., 1985, The primate premotor cortex: Past, present, and preparatory, Annu. Rev. Neurosci. 8: 1–19.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, J. R., 1978, Ontogenetic aspects of cortical architecture: Lamination, in: Architectonics of the Cerebral Cortex ( M. A. B. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 159–173.

    Google Scholar 

  • Wong, W. C., 1967, The tangential organization of dendrites and axons in three auditory areas of the cat’s cerebral cortex, J. Anat. 101: 419–433.

    PubMed  CAS  Google Scholar 

  • Woolsey, C. N., 1960a, Organization of cortical auditory system: A review and a synthesis, in: Neural Mechanisms of the Auditory and Vestibular Systems (G. L. Rasmussen and W. F. Windle, eds.), Thomas, Springfield, 111., pp. 165–180.

    Google Scholar 

  • Woolsey, C. N., 1960b, Some observations on brain fissuration in relation to cortical localization of function, in: Structure and Function of the Cerebral Cortex ( D. B. Tower and J. P. Schadé, eds.), Elsevier, Amsterdam, pp. 64–68.

    Google Scholar 

  • Woolsey, C. N., 1963, Comparative studies on localization in precentrai and supplementary motor areas, Int. J. Neurol. 4: 13–20.

    PubMed  CAS  Google Scholar 

  • Woolsey, C. N., 1964, Cortical localization as defined by evoked potential and electrical stimulation studies, in: Cerebral Localization and Organization ( G. Schaltenbrand and G. N. Woolsey, eds.), University of Wisconsin Press, Madison, pp. 17–26.

    Google Scholar 

  • Woolsey, C. N., (ed.), 1981a, Cortical Sensory Organization, Volume 1, Multiple Somtic Areas, Humana Press, Clifton, N.J.

    Google Scholar 

  • Woolsey, C. N., (ed.), 1981b, Cortical Sensory Organization, Volume 2, Multiple Somtic Areas, Humana Press, Clifton, N.J.

    Google Scholar 

  • Woolsey, C. N., (ed.), 1981c, Cortical Sensory Organization, Volume 3, Multiple Somtic Areas, Humana Press, Clifton, N.J.

    Google Scholar 

  • Woolsey, C. N., 1984, Comparative evoked potential studies on somatosensory cortex of animals, in: Somatosensory Mechanisms ( C. von Euler, O. Franzen, U. Lindblom, and D. Ottoson, eds.), Macmillan & Co., London, pp. 19–49.

    Google Scholar 

  • Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep and other mammals, Surgery 19: 684–702.

    PubMed  CAS  Google Scholar 

  • Wree, A., Zilles, K., and Schleicher, A., 1981, A quantitative approach to cytoarchitectonics. VII. The areal pattern of the cortex of the guinea pig, Anat. Embryol. 162: 81–103.

    Article  PubMed  CAS  Google Scholar 

  • Wree, A., Zilles, K., and Schleicher, A., 1983, A quantitative approach to cytoarchitectonics. VIII. The areal pattern of the cortex of the albino mouse, Anat. Embryol. 166: 333–353.

    Article  PubMed  CAS  Google Scholar 

  • Wright, R. D., 1934, Some mechanical factors in the evolution of the central nervous system, J. Anat. 69: 86–88.

    PubMed  CAS  Google Scholar 

  • Yakovlev, P. I., 1959, Pathoarchitectonic studies of cerebral malformations. III. Arrhinencephalies (holotelencephalies), J. Neuropathol. Exp. Neurol. 18: 22–55.

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev, P. I., 1968, Telencephalon “impar,” “semipar” and “totopar,” Int. J. Neurol. 6: 245–265.

    PubMed  CAS  Google Scholar 

  • Yakovlev, P. I., and Lecours, A.-R., 1967, The myelogenetic cycles of regional maturation of the brain, in: Regional Development of the Brain in Early Life ( A. Minkowski, ed.), Blackwell, Oxford, pp. 3–70.

    Google Scholar 

  • Yakovlev, P. I., and Wadsworth, R. C., 1946a, Schizencephalies. A study of the congenital clefts in the cerebral mantle. I. Clefts with fused lips. J. Neuropathol. Exp. Neurol. 5: 116–130.

    Article  PubMed  CAS  Google Scholar 

  • Yakovlev, P. I., and Wadsworth, R. C., 1946b, Schizencephalies. A study of the congenital clefts in the cerebral mantle. II. Clefts with hydrocephalus and lips separated, J. Neuropathol. Exp. Neurol. 5: 169–206.

    Article  PubMed  CAS  Google Scholar 

  • Yeni-Komshian, G. H., and Benson, D. A., 1976, Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees, and rhesus monkeys, Science 192: 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Young, R. M., 1970, Mind, Brain and Adaptation in the Nineteenth Century: Cerebral Localization and Its Biological Context from Gall to Ferrier, Oxford University Press ( Clarendon ), London.

    Google Scholar 

  • Zecevic, N., and Rakic, P., 1985, Changes in the organization and density of synaptic contacts in motor cortex during pre- and postnatal life of rhesus monkeys, Soc. Neurosci. Abstr. 11: 1288.

    Google Scholar 

  • Ziehen, T., 1896, Ueber die Grosshirnfurchung der Halbaffen und die Deutung einiger Furchen des menschlichen Gehirns, Arch. Psychiatr. Nervenkr. 28: 898–930.

    Article  Google Scholar 

  • Zilles, K., Stephan H., and Schleicher, A., 1982, Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species, in: Primate Brain Evolution: Methods and Concepts ( E. Armstrong and D. Falk, eds.), Plenum Press, New York, pp. 177–201.

    Chapter  Google Scholar 

  • Zilles, K., Werners, R., Büsching, U., and Schleicher, A., 1986, Ontogenesis of the laminar structure in areas 17 and 18 of the human visual cortex, Anat. Embryol. 174: 339–353.

    Article  PubMed  CAS  Google Scholar 

  • Zilles, K., Armstrong, E., and Schleicher, A., 1988, The human pattern of gyrification in the cerebral cortex, Anat. Embryol. 179: 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Zilles, K., Armstrong, E., Moser, K. H., and Stephan, H., 1989, Gyrification in the cerebral cortex of primates, Brain Beh. Evol. 34: 143–150.

    Article  CAS  Google Scholar 

  • Zulch, K. J., Creutzfeldt, O., and Galbraith, G. C., 1975, Cerebral Localization: An Otfrid Foerster Symposium, Springer, Berlin.

    Google Scholar 

  • Zurabashvili, A. D., 1964, On some vital problems of synaptoarchitectonics, J. Hirnforsch. 7: 385–391.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Welker, W. (1990). Why Does Cerebral Cortex Fissure and Fold?. In: Jones, E.G., Peters, A. (eds) Cerebral Cortex. Cerebral Cortex, vol 8B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3824-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3824-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6706-2

  • Online ISBN: 978-1-4615-3824-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics