Skip to main content

Pyrosequencing Methylation Analysis

  • Protocol
  • First Online:
Book cover Cancer Epigenetics for Precision Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1856))

Abstract

Pyrosequencing, a real-time sequencing technology, is considered a “gold standard” for quantitative allele quantification at single base resolution. Quantitative bisulfite Pyrosequencing determines DNA methylation level by analyzing artificial “C/T” SNPs at CpG sites within a specific Pyrosequencing assay. The bisulfite Pyrosequencing methylation assay design is DNA strand specific and the primer design should not contain any CpG sites and should be free of high-frequency mutations. Additionally Pyrosequencing assays must be tested for preferential amplification during bisulfite PCR to ensure the sequencing quantification accuracy and reproducibility. Pyrosequencing analysis gives a reproducible measurement of average methylation at several CpG sites within the Pyrosequencing assay directly from a PCR product, rapidly and accurately for many samples at a time. It is therefore well suited for clinical research, validation of whole-genome methylation screening results, and global methylation analysis using repetitive elements including LINE-1, Alu, and Sat2. Pyrosequencing reproducibility and accuracy result in low measurement variance, thereby increasing the likelihood of early detection of small changes in methylation levels that may become apparent in response to treatment. For example, the high reproducibility of the LINE-1 assay is important for detecting the relatively small daily changes in methylation levels associated with hypomethylation. This enables detection of differences in patterns between normal and disease tissue such as in tumor suppresser genes, and to determine global methylation changes in response drug treatments. Relatively low cost and easy automation allows the researcher to increase the experiment’s sample population to detect trends that would otherwise not have a sufficient sampling basis for statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwiatkowski M, Fredriksson S, Isaksson A, Nilsson M, Landegren U (1999) Inversion of in situ synthesized oligonucleotides: improved reagents for hybridization and primer extension in DNA microarrays. Nucleic Acids Res 27(24):4710–4714

    Google Scholar 

  2. Alderborn A, Kristofferson A, Hammerling U (2000) Determination of single-nucleotide polymorphisms by real-time pyrophosphate DNA sequencing. Genome Res 10(8):1249–1258

    Google Scholar 

  3. England R, Pettersson M (2005) Pyro Q-CpG™: quantitative analysis of methylation in multiple CpG sites by Pyrosequencing®. Nat Methods 2005:2. https://doi.org/10.1038/nmeth800

    Google Scholar 

  4. Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao YJ, Olshen A, Ballinger Y, Zhou X, Forsberg KJ, Gu J, Echipare L, O’Geen H, Lister R, Pelizzola M, Xi Y, Epstein CB, Bernstein BE, Hawkins RD, Ren B, Chung WY, Gu HC, Bock C, Gnirke A, Zhang MQ, Haussler D, Ecker J, Li W, Farnham PJ, Waterland RA, Meissner A, Marra MA, Hirst M, Milosavljevic A, Costello JF (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28(10):1097–1105

    Google Scholar 

  5. Sun Z, Cunningham J, Slager S, Kocher JP (2015) Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis. Epigenomics 7(5):813–828

    Google Scholar 

  6. Clarke MA, Luhn P, Gage JC, Bodelon C, Dunn ST, Walker J, Zuna R, Hewitt S, Killian JK, Yan L, Miller A, Schiffman M, Wentzensen N (2017) Discovery and validation of candidate host DNA methylation markers for detection of cervical precancer and cancer. Int J Cancer 141(4):701–710

    Google Scholar 

  7. Roessler J, Ammerpohl O, Gutwein J, Hasemeier B, Anwar SL, Kreipe H, Lehmann U (2012) Quantitative cross-validation and content analysis of the 450k DNA methylation array from Illumina, Inc. BMC Res Notes 5:210. https://doi.org/10.1186/1756-0500-5-210

    Google Scholar 

  8. Day SE, Coletta RL, Kim JY, Campbell LE, Benjamin TR, Roust KR, De Filippis EA, Dinu V, Shaibi GQ, Mandarino LJ, Coletta DK (2016) Next-generation sequencing methylation profiling of subjects with obesity identifies novel gene changes. Clin Epigenetics 8:77

    Google Scholar 

  9. Kucuk C, Hu X, Jiang B, Klinkebiel D, Geng H, Gong Q, Bouska A, Iqbal J, Gaulard P, McKeithan TW, Chan WC (2015) Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res 21(7):1699–1711

    Google Scholar 

  10. Crary-Dooley FK, Tam ME, Dunaway KW, Hertz-Picciotto I, Schmidt RJ, LaSalle JM (2015) A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12(3):206–214

    Google Scholar 

  11. Moreira L, Munoz J, Cuatrecasas M, Quintanilla I, Leoz ML, Carballal S, Ocaña T, Lopez-Ceron M, Pellise M, Castellvi-Bel S, Jover R, Andreu M, Carracedo A, Xicola RM, Llor X, Boland CR, Goel A, Castells A, Balaguer F, Gastrointestinal Oncology Group of the Spanish Gastroenterological Association (2015) Prevalence of somatic mutl homolog 1 promoter hypermethylation in Lynch syndrome colorectal cancer. Cancer 121(9):1395–1404

    Google Scholar 

  12. Villani V, Casini B, Pace A, Prosperini L, Carapella CM, Vidiri A, Fabi A, Carosi M (2015) The prognostic value of pyrosequencing-detected MGMT promoter hypermethylation in newly diagnosed patients with glioblastoma. Dis Markers 2015:604719. https://doi.org/10.1155/2015/604719

    Google Scholar 

  13. Agodi A, Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M (2015) DAPK1 promoter methylation and cervical cancer risk: a systematic review and a meta-analysis. PLoS One 10(8):e0135078

    Google Scholar 

  14. Frazzi R, Zanetti E, Pistoni M, Tamagnini I, Valli R, Braglia L, Merli F (2017) Methylation changes of SIRT1, KLF4, DAPK1 and SPG20 in B-lymphocytes derived from follicular and diffuse large B-cell lymphoma. Leuk Res 57:89–96

    Google Scholar 

  15. Esteller M (2003) Profiling aberrant DNA methylation in hematologic neoplasms: a view from the tip of the iceberg. Clin Immunol 109(1):80–88

    Google Scholar 

  16. Chim CS, Kwong YL, Liang R (2008) Gene hypermethylation in multiple myeloma: lessons from a cancer pathway approach. Clin Lymphoma Myeloma 8(6):331–339

    Google Scholar 

  17. Leong KJ, Beggs A, James J, Morton DG, Matthews GM, Bach SP (2014) Biomarker-based treatment selection in early-stage rectal cancer to promote organ preservation. Br J Surg 101(10):1299–1309

    Google Scholar 

  18. Wei QX, Claus R, Hielscher T, Mertens D, Raval A, Oakes CC, Tanner SM, de la Chapelle A, Byrd JC, Stilgenbauer S, Plass C (2013) Germline allele-specific expression of DAPK1 in chronic lymphocytic leukemia. PLoS One 8(1):e55261

    Google Scholar 

  19. Amara K, Trimeche M, Ziadi S, Laatiri A, Hachana M, Korbi S (2008) Prognostic significance of aberrant promoter hypermethylation of CpG islands in patients with diffuse large B-cell lymphomas. Ann Oncol 19(10):1774–1786

    Google Scholar 

  20. Kristensen LS, Treppendahl MB, Asmar F, Girkov MS, Nielsen HM, Kjeldsen TE, Ralfkiaer E, Hansen LL, Gronbaek K (2013) Investigation of MGMT and DAPK1 methylation patterns in diffuse large B-cell lymphoma using allelic MSP-pyrosequencing. Sci Rep 3:2789. https://doi.org/10.1038/srep02789

    Google Scholar 

  21. Kristensen LS, Hansen JW, Kristensen SS, Tholstrup D, Harslof LB, Pedersen OB, De Nully Brown P, Gronbaek K (2016) Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma. Clin Epigenetics 8(1):95

    Google Scholar 

  22. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1):3

    Google Scholar 

  23. Tabish AM, Baccarelli AA, Godderis L, Barrow TM, Hoet P, Byun HM (2015) Assessment of changes in global DNA methylation levels by pyrosequencing® of repetitive elements. Methods Mol Biol 1315:201–207

    Google Scholar 

  24. Karimi M, Luttropp K, Ekstrom TJ (2011) Global DNA methylation analysis using the luminometric methylation assay. Methods Mol Biol 791:135–144

    Google Scholar 

  25. Barry KH, Moore LE, Liao LM, Huang WY, Andreotti G, Poulin M, Berndt SI (2015) Prospective study of DNA methylation at LINE-1 and Alu in peripheral blood and the risk of prostate cancer. Prostate 75(15):1718–1725

    Google Scholar 

  26. Rauscher GH, Kresovich JK, Poulin M, Yan L, Macias V, Mahmoud AM, Al-Alem U, Kajdacsy-Balla A, Wiley EL, Tonetti D, Ehrlich M (2015) Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation. BMC Cancer 15:816

    Google Scholar 

  27. Manzardo AM, Butler MG (2016) Examination of global methylation and targeted imprinted genes in Prader-Willi syndrome. J Clin Epigenet 2(3):pii: 26. https://doi.org/10.21767/2472-1158.100026

    Google Scholar 

  28. Yang AS, Estécio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32(3):e38

    Google Scholar 

  29. Rusiecki JA, Chen LG, Srikantan V, Zhang L, Yan LY, Poulin ML, Baccarelli A (2012) DNA methylation in repetitive elements and post-traumatic stress disorder: a case–control study of US military service members. Epigenomics 4(1). https://doi.org/10.2217/epi.11.116

  30. Clark C, Palta P, Joyce CJ, Scott C, Grundberg E, Deloukas P, Palotie A, Coffey AJ (2012) A comparison of the whole genome approach of MeDIP-Seq to the targeted approach of the Infinium HumanMethylation450 BeadChip® for methylome profiling. PLoS One 7(11):e50233

    Google Scholar 

  31. Rivera RA, Pelloski CE, Gilbert MR, Colman H, De La Cruz C, Sulman EP, Bekele BN, Aldape KD (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro-Oncology 12(2):116–121

    Google Scholar 

  32. Nagai Y, Sunami E, Yamamoto Y, Hata K, Okada S, Murono K, Yasuda K, Otani K, Nishikawa T, Tanaka T, Kiyomatsu T, Kawai K, Nozawa H, Ishihara S, Hoon DS, Watanabe T (2017) LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 8(7):11906–11916

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poulin, M., Zhou, J.Y., Yan, L., Shioda, T. (2018). Pyrosequencing Methylation Analysis. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics for Precision Medicine . Methods in Molecular Biology, vol 1856. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8751-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8751-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8750-4

  • Online ISBN: 978-1-4939-8751-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics