Skip to main content

fMRI in Epilepsy

  • Protocol
  • First Online:
Book cover fMRI Techniques and Protocols

Part of the book series: Neuromethods ((NM,volume 41))

Summary

This chapter provides an overview of the application of functional MRI applied to the field of Epilepsy and is divided into two sections, covering cognitive mapping and imaging of paroxysmal activity, respectively. In addition to a review of the most scientifically and clinically relevant findings, technical and methodological background information is provided to help the reader better understand the data acquisition process. We show how both approaches may play a role in the pre-surgical evaluation of patients with drug-resistant focal epilepsy and provide opportunities for new insights into the neuropathological processes that underlie both focal and generalised epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baxendale S. The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: a clinical perspective and review. J Clin Exp Neuropsychol 2002; 24(5):664–676.

    Article  PubMed  Google Scholar 

  2. Kirsch HE, Walker JA, Winstanley FS, Hendrickson R, Wong ST, Barbaro NM et al. Limitations of Wada memory asymmetry as a predictor of outcomes after temporal lobectomy. Neurology 2005;65(5):676–680.

    Article  PubMed  CAS  Google Scholar 

  3. Fernandez G, Specht K, Weis S, Tendolkar I, Reuber M, Fell J et al. Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology 2003; 60(6):969–975.

    Article  PubMed  CAS  Google Scholar 

  4. Weber B, Wellmer J, Simone S, Dinkelacker V, Ruhlmann J, Mormann F et al. Presurgical language fMRI in patients with drug-resistant epilpesy: effects of task performance. Epilepsia 2006;47(5):880–886.

    Article  PubMed  Google Scholar 

  5. Schlosser MJ, Aoyagi N, Fulbright RK, Gore JC, McCarthy G. Functional MRI studies of auditory comprehension. Hum Brain Mapp 1998;6(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  6. Lehericy S, Cohen L, Bazin B, Samson S, Giacomini E, Rougetet R et al. Functional MR evaluation of temporal and frontal language dominance compared with the Wada test. Neurology 2000;54(8):1625–1633.

    Article  PubMed  CAS  Google Scholar 

  7. Gaillard WD, Balsamo L, Xu B, McKinney C, Papero PH, Weinstein S et al. fMRI language task panel improves determination of language dominance. Neurology 2004;63(8):1403–1408.

    Article  PubMed  CAS  Google Scholar 

  8. Gaillard WD, Balsamo L, Xu B, Grandin CB, Braniecki SH, Papero PH et al. Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 2002;59(2):256–265.

    Article  PubMed  CAS  Google Scholar 

  9. Adcock JE, Wise RG, Oxbury JM, Oxbury SM, Matthews PM. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 2003; 18(2):423–438.

    Article  PubMed  CAS  Google Scholar 

  10. Branco DM, Suarez RO, Whalen S, O’Shea JP, Nelson AP, da Costa JC et al. Functional MRI of memory in the hippocampus: laterality indices may be more meaningful if calculated from whole voxel distributions. Neuroimage 2006;32(2):592–602.

    Article  PubMed  Google Scholar 

  11. Liegeois F, Connelly A, Cross JH, Boyd SG, Gadian DG, Vargha-Khadem F et al. Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 2004;127(Pt 6):1229–1236.

    Article  PubMed  CAS  Google Scholar 

  12. Woermann FG, Jokeit H, Luerding R, Freitag H, Schulz R, Guertler S et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 2003; 61(5):699–701.

    Article  PubMed  CAS  Google Scholar 

  13. Friston KJ, Price CJ, Fletcher P, Moore C, Frackowiak RS, Dolan RJ. The trouble with cognitive subtraction. Neuroimage 1996; 4(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  14. Price CJ, Friston KJ. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 1997;5(4 Pt 1):261–270.

    Article  PubMed  CAS  Google Scholar 

  15. Risse GL, Gates JR, Fangman MC. A reconsideration of bilateral language representation based on the intracarotid amobarbital procedure. Brain Cogn 1997;33(1):118–132.

    Article  PubMed  CAS  Google Scholar 

  16. Serafetinides EA, Hoare RD, Driver M. Intracarotid sodium amylobarbitone and cerebral dominance for speech and consciousness. Brain 1965;88:107–130.

    Article  PubMed  CAS  Google Scholar 

  17. Rasmussen T, Milner B. The role of early left-brain injury in determining lateralization of cerebral speech functions. Ann N Y Acad Sci 1977;299:355–369.

    Article  PubMed  CAS  Google Scholar 

  18. Springer JA, Binder JR, Hammeke TA, Swanson SJ, Frost JA, Bellgowan PS et al. Language dominance in neurologically normal and epilepsy subjects: a functional MRI study. Brain 1999;122(Pt 11):2033–2046.

    Article  PubMed  Google Scholar 

  19. Janszky J, Mertens M, Janszky I, Ebner A, Woermann FG. Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia 2006;47(5):921–927.

    Article  PubMed  Google Scholar 

  20. Janszky J, Jokeit H, Heinemann D, Schulz R, Woermann FG, Ebner A. Epileptic activity influences the speech organization in medial temporal lobe epilepsy. Brain 2003;126(Pt 9):2043–2051.

    Article  PubMed  CAS  Google Scholar 

  21. Thivard L, Hombrouck J, du Montcel ST, Delmaire C, Cohen L, Samson S et al. Productive and perceptive language reorganization in temporal lobe epilepsy. Neuroimage 2005;24(3):841–851.

    Article  PubMed  Google Scholar 

  22. Berl MM, Balsamo LM, Xu B, Moore EN, Weinstein SL, Conry JA et al. Seizure focus affects regional language networks assessed by fMRI. Neurology 2005;65(10):1604–1611.

    Article  PubMed  CAS  Google Scholar 

  23. Weber B, Wellmer J, Reuber M, Mormann F, Weis S, Urbach H et al. Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain 2006;129:346–351.

    Article  PubMed  Google Scholar 

  24. Briellmann RS, Labate A, Harvey AS, Saling MM, Sveller C, Lillywhite L et al Is language lateralization in temporal lobe epilepsy patients related to the nature of the epileptogenic lesion? Epilepsia 2006;47(5):916–920.

    Article  PubMed  Google Scholar 

  25. Benke T, Koylu B, Visani P, Karner E, Brennais C, Bartha L et al. Language lateralisation in temporal lobe epilepsy: a comparison between fMRI and the Wada Test. Epilepsia 2006;47:1308–1309.

    Article  PubMed  Google Scholar 

  26. Jayakar P, Bernal B, Santiago ML, Altman N. False lateralization of language cortex on functional MRI after a cluster of focal seizures. Neurology 2002;58(3):490–492.

    Article  PubMed  Google Scholar 

  27. FitzGerald DB, Cosgrove GR, Ronner S, Jiang H, Buchbinder BR, Belliveau JW et al. Location of language in the cortex: a comparison between functional MR imaging and electrocortical stimulation. AJNR Am J Neuroradiol 1997;18(8):1529–1539.

    PubMed  CAS  Google Scholar 

  28. Schlosser MJ, Luby M, Spencer DD, Awad IA, McCarthy G. Comparative localization of auditory comprehension by using functional magnetic resonance imaging and cortical stimulation. J Neurosurg 1999;91(4):626–635.

    Article  PubMed  CAS  Google Scholar 

  29. Pouratian N, Bookheimer SY, Rex DE, Martin NA, Toga AW. Utility of preoperative functional magnetic resonance imaging for identifying language cortices in patients with vascular malformations. J Neurosurg 2002;97(1):21–32.

    Article  PubMed  Google Scholar 

  30. Rutten GJ, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CW. Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporoparietal language areas. Ann Neurol 2002;51(3):350–360.

    Article  PubMed  CAS  Google Scholar 

  31. Davies KG, Bell BD, Bush AJ, Hermann BP, Dohan FC, Jr., Jaap AS. Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia 1998;39(4):407–419.

    Article  PubMed  CAS  Google Scholar 

  32. Saykin AJ, Stafiniak P, Robinson LJ, Flannery KA, Gur RC, O’Connor MJ et al. Language before and after temporal lobectomy: specificity of acute changes and relation to early risk factors. Epilepsia 1995;36(11):1071–1077.

    Article  PubMed  CAS  Google Scholar 

  33. Hermann BP, Perrine K, Chelune GJ, Barr W, Loring DW, Strauss E et al. Visual confrontation naming following left anterior temporal lobectomy: a comparison of surgical approaches. Neuropsychology 1999; 13(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  34. Devinsky O, Perrine K, Llinas R, Luciano DJ, Dogali M. Anterior temporal language areas in patients with early onset of temporal lobe epilepsy. Ann Neurol 1993;34(5):727–732.

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz TH, Devinsky O, Doyle W, Perrine K. Preoperative predictors of anterior temporal language areas. J Neurosurg 1998; 89(6):962–970.

    Article  PubMed  CAS  Google Scholar 

  36. Sabsevitz DS, Swanson SJ, Hammeke TA, Spanaki MV, Possing ET, Morris GL, III et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 2003;60(11):1788–1792.

    Article  PubMed  CAS  Google Scholar 

  37. Noppeney U, Price CJ, Duncan JS, Koepp MJ. Reading skills after left anterior temporal lobe resection: an fMRI study. Brain 2005; 128(Pt 6):1377–1385.

    Article  PubMed  Google Scholar 

  38. Voets NL, Adcock JE, Flitney DE, Behrens TE, Hart Y, Stacey R et al. Distinct right frontal lobe activation in language processing following left hemisphere injury. Brain 2006; 129(Pt 3):754–766.

    Article  PubMed  CAS  Google Scholar 

  39. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA et al. Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. Neuroimage 2006; 32(1):388–399.

    Article  PubMed  Google Scholar 

  40. Powell HW, Parker GJ, Alexander DC, Symms M, Boulby P, Wheeler-Kingshott CA et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage 2007; 36(1):209–221.

    Article  PubMed  Google Scholar 

  41. Desmond JE, Sum JM, Wagner AD, Demb JB, Shear PK, Glover GH et al. Functional MRI measurement of language lateralization in Wada-tested patients. Brain 1995;118(Pt 6):1411–1419.

    Article  PubMed  Google Scholar 

  42. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 1996;46(4):978–984.

    Article  PubMed  CAS  Google Scholar 

  43. Hertz-Pannier L, Gaillard WD, Mott SH, Cuenod CA, Bookheimer SY, Weinstein S et al. Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 1997;48(4):1003–1012.

    Article  PubMed  CAS  Google Scholar 

  44. Yetkin FZ, Swanson S, Fischer M, Akansel G, Morris G, Mueller W et al. Functional MR of frontal lobe activation: comparison with Wada language results. AJNR Am J Neuroradiol 1998;19(6):1095–1098.

    PubMed  CAS  Google Scholar 

  45. Benson RR, FitzGerald DB, LeSueur LL, Kennedy DN, Kwong KK, Buchbinder BR et al. Language dominance determined by whole brain functional MRI in patients with brain lesions. Neurology 1999;52(4):798–809.

    Article  PubMed  CAS  Google Scholar 

  46. Carpentier A, Pugh KR, Westerveld M, Studholme C, Skrinjar O, Thompson JL et al. Functional MRI of language processing: dependence on input modality and temporal lobe epilepsy. Epilepsia 2001;42(10):1241–1254.

    Article  PubMed  CAS  Google Scholar 

  47. Sabbah P, Chassoux F, Leveque C, Landre E, Baudoin-Chial S, Devaux B et al. Functional MR imaging in assessment of language dominance in epileptic patients. Neuroimage 2003; 18(2):460–467.

    Article  PubMed  CAS  Google Scholar 

  48. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. 1957. J Neuropsychiatry Clin Neurosci 2000; 12(1):103–113.

    PubMed  CAS  Google Scholar 

  49. Ivnik RJ, Sharbrough FW, Laws ER, Jr. Effects of anterior temporal lobectomy on cognitive function. J Clin Psychol 1987;43(1):128–137.

    Article  PubMed  CAS  Google Scholar 

  50. Spiers HJ, Burgess N, Maguire EA, Baxendale SA, Hartley T, Thompson PJ et al. Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain 2001;124(Pt 12):2476–2489.

    Article  PubMed  CAS  Google Scholar 

  51. Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry 1958;79(5):475–497.

    PubMed  CAS  Google Scholar 

  52. Warrington EK, Duchen LW. A re-appraisal of a case of persistent global amnesia following right temporal lobectomy: a clinico-pathological study. Neuropsychologia 1992; 30(5):437–450.

    Article  PubMed  CAS  Google Scholar 

  53. Loring DW, Hermann BP, Meador KJ, Lee GP, Gallagher BB, King DW et al. Amnesia after unilateral temporal lobectomy: a case report. Epilepsia 1994;35(4):757–763.

    Article  PubMed  CAS  Google Scholar 

  54. Chelune GJ. Hippocampal adequacy versus functional reserve: predicting memory functions following temporal lobectomy. Arch Clin Neuropsychol 1995;10(5):413–432.

    PubMed  CAS  Google Scholar 

  55. Chelune GJ, Naugle RI, Luders H, Awad IA. Prediction of cognitive change as a function of preoperative ability status among temporal lobectomy patients seen at 6-month follow-up. Neurology 1991;41(3):399–404.

    Article  PubMed  CAS  Google Scholar 

  56. Kneebone AC, Chelune GJ, Dinner DS, Naugle RI, Awad IA. Intracarotid amobarbital procedure as a predictor of material-specific memory change after anterior temporal lobectomy. Epilepsia 1995;36(9):857–865.

    Article  PubMed  CAS  Google Scholar 

  57. Sass KJ, Spencer DD, Kim JH, Westerveld M, Novelly RA, Lencz T. Verbal memory impairment correlates with hippocampal pyramidal cell density. Neurology 1990;40(11):1694–1697.

    Article  PubMed  CAS  Google Scholar 

  58. Trenerry MR, Jack CR, Jr, Ivnik RJ, Sharbrough FW, Cascino GD, Hirschorn KA et al. MRI hippocampal volumes and memory function before and after temporal lobectomy. Neurology 1993;43(9):1800–1805.

    Article  PubMed  CAS  Google Scholar 

  59. Hermann BP, Wyler AR, Somes G, Berry AD, III, Dohan FC, Jr. Pathological status of the mesial temporal lobe predicts memory outcome from left anterior temporal lobectomy. Neurosurgery 1992;31(4):652–656.

    Article  PubMed  CAS  Google Scholar 

  60. Sass KJ, Westerveld M, Buchanan CP, Spencer SS, Kim JH, Spencer DD. Degree of hippocampal neuron loss determines severity of verbal memory decrease after left anteromesiotemporal lobectomy. Epilepsia 1994; 35(6):1179–1186.

    Article  PubMed  CAS  Google Scholar 

  61. Jokeit H, Ebner A, Holthausen H, Markowitsch HJ, Moch A, Pannek H et al. Individual prediction of change in delayed recall of prose passages after left-sided anterior temporal lobectomy. Neurology 1997;49(2):481–487.

    Article  PubMed  CAS  Google Scholar 

  62. Helmstaedter C, Elger CE. Cognitive consequences of two-thirds anterior temporal lobectomy on verbal memory in 144 patients: a three-month follow-up study. Epilepsia 1996;37(2):171–180.

    Article  PubMed  CAS  Google Scholar 

  63. Corkin S, Amaral DG, Gonzalez RG, Johnson KA, Hyman BT. H. M.’s medial temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 1997;17(10):3964–3979.

    PubMed  CAS  Google Scholar 

  64. Fernandez G, Effern A, Grunwald T, Pezer N, Lehnertz K, Dumpelmann M et al. Real-time tracking of memory formation in the human rhinal cortex and hippocampus. Science 1999; 285(5433):1582–1585.

    Article  PubMed  CAS  Google Scholar 

  65. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 1997;6(3):156–167.

    Article  PubMed  CAS  Google Scholar 

  66. Greicius MD, Krasnow B, Boyett-Anderson JM, Eliez S, Schatzberg AF, Reiss AL et al. Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus 2003;13(1):164–174.

    Article  PubMed  Google Scholar 

  67. Lipschutz B, Friston KJ, Ashburner J, Turner R, Price CJ. Assessing study-specific regional variations in fMRI signal. Neuroimage 2001; 13(2):392–398.

    Article  PubMed  CAS  Google Scholar 

  68. Craik FIM, Lockhart RS. Levels of processing: a framework for memory. J Verbal Learn Verbal Behav 1972;11:671–684.

    Article  Google Scholar 

  69. Kelley WM, Miezin FM, McDermott KB, Buckner RL, Raichle ME, Cohen NJ et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 1998;20(5):927–936.

    Article  PubMed  CAS  Google Scholar 

  70. Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, Gabrieli JD. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J Neurosci 1995; 15(9):5870–5878.

    PubMed  CAS  Google Scholar 

  71. Wagner AD, Schacter DL, Rotte M, Koutstaal W,Maril A, Dale AM et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 1998;281(5380):1188–1191.

    Article  PubMed  CAS  Google Scholar 

  72. Buckner RL, Kelley WM, Petersen SE. Frontal cortex contributes to human memory formation. Nat Neurosci 1999;2(4):311–314.

    Article  PubMed  CAS  Google Scholar 

  73. Golby AJ, Poldrack RA, Brewer JB, Spencer D, Desmond JE, Aron AP et al. Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain 2001;124(Pt 9):1841–1854.

    Article  PubMed  CAS  Google Scholar 

  74. Wagner AD, Koutstaal W, Schacter DL. When encoding yields remembering: insights from event-related neuroimaging. Philos Trans R Soc Lond B Biol Sci 1999;354(1387):1307–1324.

    Article  PubMed  CAS  Google Scholar 

  75. Powell HW, Koepp MJ, Symms MR, Boulby PA, Salek-Haddadi A, Thompson PJ et al. Material-specific lateralization of memory encoding in the medial temporal lobe: blocked versus event-related design. Neuroimage 2005;27(1):231–239.

    Article  PubMed  CAS  Google Scholar 

  76. Detre JA, Maccotta L, King D, Alsop DC, Glosser G, D’Esposito M et al. Functional MRI lateralization of memory in temporal lobe epilepsy. Neurology 1998;50(4):926–932.

    Article  PubMed  CAS  Google Scholar 

  77. Richardson MP, Strange BA, Duncan JS, Dolan RJ. Preserved verbal memory function in left medial temporal pathology involves reorganisation of function to right medial temporal lobe. Neuroimage 2003;20(Suppl 1):S112–S119.

    Article  PubMed  Google Scholar 

  78. Powell HW, Richardson MP, Symms MR, Boulby PA, Thompson PJ, Duncan JS et al. Reorganisation of verbal and non-verbal memory in temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsia 2007; 48(8):1512–1525.

    Article  PubMed  Google Scholar 

  79. Bellgowan PS, Binder JR, Swanson SJ, Hammeke TA, Springer JA, Frost JA et al. Side of seizure focus predicts left medial temporal lobe activation during verbal encoding. Neurology 1998;51(2):479–484.

    Article  PubMed  CAS  Google Scholar 

  80. Jokeit H, Okujava M, Woermann FG. Memory fMRI lateralizes temporal lobe epilepsy. Neurology 2001;57(10):1786–1793.

    Article  PubMed  CAS  Google Scholar 

  81. Golby AJ, Poldrack RA, Illes J, Chen D, Desmond JE, Gabrieli JD. Memory lateralization in medial temporal lobe epilepsy assessed by functional MRI. Epilepsia 2002;43(8):855–863.

    Article  PubMed  Google Scholar 

  82. Richardson MP, Strange BA, Thompson PJ, Baxendale SA, Duncan JS, Dolan RJ. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain 2004;127(Pt 11):2419–2426.

    Article  PubMed  Google Scholar 

  83. Richardson MP, Strange BA, Duncan JS, Dolan RJ. Memory fMRI in left hippocampal sclerosis: optimizing the approach to predicting postsurgical memory. Neurology 2006; 66(5):699–705.

    Article  PubMed  Google Scholar 

  84. Powell HW, Richardson MP, Symms MR, Boulby PA, Thompson PJ, Duncan JS et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry 2008; 79(6):686–693.

    Article  PubMed  CAS  Google Scholar 

  85. Rabin ML, Narayan VM, Kimberg DY, Casasanto DJ, Glosser G, Tracy JI et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 2004; 127(Pt 10):2286–2298.

    Article  PubMed  Google Scholar 

  86. Janszky J, Jokeit H, Kontopoulou K, Mertens M, Ebner A, Pohlmann-Eden B et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia 2005;46(2):244–250.

    Article  PubMed  Google Scholar 

  87. Price CJ, Friston KJ. Scanning patients with tasks they can perform. Hum Brain Mapp 1999;8(2–3):102–108.

    Article  PubMed  CAS  Google Scholar 

  88. Von Helmholtz HLF. Some laws concerning the distribution of electric currents in volume conductors with applications to experiments on animal electricity (Reprinted from Poggendorff’s Annals, vol 89, pp. 211–233, 353–377, 1853). Proc IEEE 2004;92(5):868–870.

    Article  Google Scholar 

  89. Geselowitz DB. Introduction to some laws concerning the distribution of electric currents in volume conductors with applications to experiments on animal electricity. Proc IEEE 2004;92(5):864–867.

    Article  Google Scholar 

  90. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL. Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 1993;87(6):417–420.

    Article  PubMed  CAS  Google Scholar 

  91. Detre JA, Alsop DC, Aguirre GK, Sperling MR. Coupling of cortical and thalamic ictal activity in human partial epilepsy: demonstration by functional magnetic resonance imaging. Epilepsia 1996;37(7):657–661.

    Article  PubMed  CAS  Google Scholar 

  92. Krings T, Topper R, Reinges MHT, Foltys H, Spetzger U, Chiappa KH et al. Hemodynamic changes in simple partial epilepsy: a functional MRI study. Neurology 2000;54(2):524–527.

    Article  PubMed  CAS  Google Scholar 

  93. Connelly A. Ictal imaging using functional magnetic resonance. Magn Reson Imaging 1995;13(8):1233–1237.

    Article  PubMed  CAS  Google Scholar 

  94. Jackson GD, Connelly A, Cross JH, Gordon I, Gadian DG. Functional magnetic resonance imaging of focal seizures. Neurology 1994; 44(5):850–856.

    Article  PubMed  CAS  Google Scholar 

  95. Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR. Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 1997;38(6):943–952.

    Article  PubMed  CAS  Google Scholar 

  96. Mirsattari SM, Lee DH, Jones D, Bihari F, Ives JR. MRI compatible EEG electrode system for routine use in the epilepsy monitoring unit and intensive care unit. Clin Neurophysiol 2004;115(9):2175–2180.

    Article  PubMed  Google Scholar 

  97. Konings MK, Bartels LW, Smits HFM, Bakker CJG. Heating around intravascular guidewires by resonating RF waves. J-Magn-Reson-Imaging 2000;12:79–85.

    Article  PubMed  CAS  Google Scholar 

  98. Fischer H, Ladebeck R. Echo-planar imaging image artifacts. In: Schmitt F, Stehling MK, Turner R, editors. Echo-Planar Imaging: Theory, Technique, and Application. Berlin: Springer-Verlag, 1998;179–200.

    Chapter  Google Scholar 

  99. Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR. EEG recording during fMRI experiments: image quality. Hum Brain Mapp 2000;10(1):10–15.

    Article  PubMed  CAS  Google Scholar 

  100. Bonmassar G, Anami K, Ives JR, Belliveau JW. Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport 1999;10(9):1893–1897.

    Article  PubMed  CAS  Google Scholar 

  101. Bonmassar G, Purdon PL, Jaaskelainen IP, Chiappa KH, Solo V, Brown EN et al. Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI. NeuroImage 2002; 16(4):1127–1141.

    Article  PubMed  Google Scholar 

  102. Scarff CJ, Reynolds A, Goodyear BG, Ponton CW, Dort JC, Eggermont JJ. Simultaneous 3-T fMRI and high-density recording of human auditory evoked potentials. NeuroImage 2004;23(3):1129–1142.

    Article  PubMed  Google Scholar 

  103. Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L. Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 1998;8(3):229–239.

    Article  PubMed  CAS  Google Scholar 

  104. Wendt RE, Rokey R, Vick GW, Johnston DL. Electrocardiographic gating and monitoring in NMR imaging. Magn Reson Imaging 1988;6(1):89–95.

    Article  PubMed  Google Scholar 

  105. Poncelet BP, Wedeen VJ, Weiskoff RM, Cohen MS. Brain parenchyma motion: measurement with cine echo-planar MR imaging. Radiology 1992;185:645–651.

    PubMed  CAS  Google Scholar 

  106. Tenforde TS, Gaffey CT, Moyer BR, Budinger TF. Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. Bioelectromagnetics 1983;4(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  107. Goldman RI, Stern JM, Engel Jr, JE, Cohen MS. Acquiring simultaneous EEG and functional MRI. Clin-Neurophysiol 2000; 111:1974–1980.

    Article  PubMed  CAS  Google Scholar 

  108. Benar C, Aghakhani Y, Wang Y, Izenberg A, Al Asmi A, Dubeau F et al. Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol 2003;114(3):569–580.

    Article  PubMed  Google Scholar 

  109. Salek-Haddadi A, Lemieux L, Merschhemke M, Diehl B, Allen PJ, Fish DR. EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn Reson Imaging 2003;21(10):1159–1166.

    Article  PubMed  Google Scholar 

  110. Liston AD, De Munck JC, Hamandi K, Laufs H, Ossenblok P, Duncan JS et al. Analysis of EEG-fMRI data in focal epilepsy based on automated spike classification and Signal Space Projection. Neuroimage 2006; 31(3):1015–1024.

    Article  PubMed  Google Scholar 

  111. Ellingson ML, Liebenthal E, Spanaki MV, Prieto TE, Binder JR, Ropella KM. Ballisto­cardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI. Neuroimage 2004;22(4):1534–1542.

    Article  PubMed  CAS  Google Scholar 

  112. Kruggel F, Wiggins CJ, Herrmann CS, von Cramon DY. Recording of the event-related potentials during functional MRI at 3.0 Tesla field strength. Magn Reson Med 2000;44:277–282.

    Article  PubMed  CAS  Google Scholar 

  113. Sijbers J, Van Audekerke J, Verhoye M, Van der LA, Van Dyck D. Reduction of ECG and gradient related artifacts in simultaneously recorded human EEG/MRI data. Magn Reson Imaging 2000;18(7):881–886.

    Article  Google Scholar 

  114. Kim KH, Yoon HW, Park HW. Improved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI. J Neurosci Methods 2004;135(1–2):193–203.

    Article  PubMed  Google Scholar 

  115. Wan X, Iwata K, Riera J, Ozaki T, Kitamura M, Kawashima R. Artifact reduction for EEG/fMRI recording: nonlinear reduction of ballistocardiogram artifacts. Clin Neurophysiol 2006;117(3):668–680.

    Article  PubMed  Google Scholar 

  116. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 2005; 28(3):720–737.

    Article  PubMed  CAS  Google Scholar 

  117. In MH, Lee SY, Park TS, Kim TS, Cho MH, Ahn YB. Ballistocardiogram artifact removal from EEG signals using adaptive filtering of EOG signals. Physiol Meas 2006; 27(11):1227–1240.

    Article  PubMed  Google Scholar 

  118. Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H et al. Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 2005;102(49):17798–17803.

    Article  PubMed  CAS  Google Scholar 

  119. Otzenberger H, Gounot D, Foucher JR. P300 recordings during event-related fMRI: a feasibility study. Brain Res Cogn Brain Res 2005;23(2–3):306–315.

    Article  PubMed  CAS  Google Scholar 

  120. Otzenberger H, Gounot D, Foucher JR. Optimisation of a post-processing method to remove the pulse artifact from EEG data recorded during fMRI: an application to P300 recordings during e-fMRI. Neurosci Res 2007;57(2):230–239.

    Article  PubMed  CAS  Google Scholar 

  121. Srivastava G, Crottaz-Herbette S, Lau KM, Glover GH, Menon V. ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. NeuroImage 2005;24(1):50–60.

    Article  PubMed  CAS  Google Scholar 

  122. Nakamura W, Anami K, Mori T, Saitoh O, Cichocki A, Amari S. Removal of ballistocardiogram artifacts from simultaneously recorded EEG and fMRI data using independent component analysis. IEEE Trans Biomed Eng 2006;53(7):1294–1308.

    Article  PubMed  Google Scholar 

  123. Briselli E, Garreffa G, Bianchi L, Bianciardi M, Macaluso E, Abbafati M et al. An independent component analysis-based approach on ballistocardiogram artifact removing. Magn Reson Imaging 2006;24(4):393–400.

    Article  PubMed  Google Scholar 

  124. Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C. Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 2007; 34(2):598–607.

    Article  PubMed  CAS  Google Scholar 

  125. Debener S, Strobel A, Sorger B, Peters J, Kranczioch C, Engel AK et al. Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: removal of the ballistocardiogram artefact. NeuroImage 2007;34(2):587–597.

    Article  PubMed  Google Scholar 

  126. Allen PJ, Josephs O, Turner R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 2000;12(2):230–239.

    Article  PubMed  CAS  Google Scholar 

  127. Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V et al. EEG-triggered echo-planar functional MRI in epilepsy. Neurology 1996;47:89–93.

    Article  PubMed  CAS  Google Scholar 

  128. Bonmassar G, Schwartz DP, Liu AK, Kwong KK, Dale AM, Belliveau JW. Spatiotemporal brain imaging of visual-evoked activity using intervleaved EEG and fMRI recordings. Neuroimage 2001;13:1035–1043.

    Article  PubMed  CAS  Google Scholar 

  129. Huang-Hellinger FR, Breiter HC, McCormack G, Cohen MS, Kwong KK, Sutton JP et al. Simultaneous functional magnetic resonance imaging and electrophysiological recording. Hum Brain Mapp 1995;3:13–23.

    Article  Google Scholar 

  130. Krakow K, Woermann FG, Symms MR, Allen PJ, Lemieux L, Barker GJ et al. EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures. Brain 1999;122(Pt 9):1679–1688.

    Article  PubMed  Google Scholar 

  131. Krakow K, Allen PJ, Lemieux L, Symms MR, Fish DR. Methodology: EEG-correlated fMRI. Adv Neurol 2000;83:187–201.

    PubMed  CAS  Google Scholar 

  132. Krakow K, Lemieux L, Messina D, Scott CA, Symms MR, Duncan JS et al. Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord 2001;3(2):67–74.

    PubMed  CAS  Google Scholar 

  133. Al Asmi A, Benar CG, Gross DW, Khani YA, Andermann F, Pike B et al. fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia 2003;44(10):1328–1339.

    Article  PubMed  Google Scholar 

  134. Anami K, Mori T, Tanaka F, Kawagoe Y, Okamoto J, Yarita M et al. Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging. NeuroImage 2003; 19(2):281–295.

    Article  PubMed  Google Scholar 

  135. Garreffa G, Carni M, Gualniera G, Ricci GB, Bozzao L, De Carli D et al. Real-time MR artifacts filtering during continuous EEG/fMRI acquisition. Magn Reson Imaging 2003;21(10):1175–1189.

    Article  PubMed  CAS  Google Scholar 

  136. Hoffmann A, Jager L, Werhahn KJ, Jaschke M, Noachtar S, Reiser M. Electroencephalography during functional echo-planar imaging: detection of epileptic spikes using post-processing methods. Magn Reson Med 2000;44(5):791–798.

    Article  PubMed  CAS  Google Scholar 

  137. Sijbers J, Michiels I, Verhoye M, Van Audekerke J, Van der Linden A, Van Dyk D. Restoration of MR-induced artifacts in simultaneously recorded MR/EEG data. Magn Reson Imaging 1999;17(9):1383–1391.

    Article  PubMed  CAS  Google Scholar 

  138. Hamandi K, Salek-Haddadi A, Laufs H, Liston A, Friston K, Fish DR et al. EEG-fMRI of idiopathic and secondarily generalized epilepsies. Neuroimage 2006;31(4):1700–1710.

    Article  PubMed  Google Scholar 

  139. Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C et al. Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage 2001;14(3):780–787.

    Article  PubMed  CAS  Google Scholar 

  140. Salek-Haddadi A, Merschhemke M, Lemieux L, Fish DR. Simultaneous EEG-correlated ictal fMRI. Neuroimage 2002; 16(1):32–40.

    Article  PubMed  Google Scholar 

  141. Salek-Haddadi A, Diehl B, Hamandi K, Merschhemke M, Liston A, Friston K et al. Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy. Brain Res 2006; 1088(1):148–166.

    Article  PubMed  CAS  Google Scholar 

  142. Mandelkow H, Halder P, Boesiger P, Brandeis D. Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth. NeuroImage 2006;32(3):1120–1126.

    Article  PubMed  CAS  Google Scholar 

  143. Negishi M, Abildgaard M, Nixon T, Constable RT. Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 2004; 115(9):2181–2192.

    Article  PubMed  Google Scholar 

  144. Wan X, Iwata K, Riera J, Kitamura M, Kawashima R. Artifact reduction for simultaneous EEG/fMRI recording: adaptive FIR reduction of imaging artifacts. Clin Neurophysiol 2006;117(3):681–692.

    Article  PubMed  Google Scholar 

  145. Ritter P, Becker R, Graefe C, Villringer A. Evaluating gradient artifact correction of EEG data acquired simultaneously with fMRI. Magn Reson Imaging 2007;25(6):923–932.

    Article  PubMed  Google Scholar 

  146. Friston KJ, Williams S, Howard R, Frackowiack RSJ, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med 1996;35:346–355.

    Article  PubMed  CAS  Google Scholar 

  147. Hajnal JV, Myers R, Oatridge A, Schwieso JE, Young IR, Bydder GM. Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn Reson Med 1994;31:283–291.

    Article  PubMed  CAS  Google Scholar 

  148. Lund TE, Norgaard MD, Rostrup E, Rowe JB, Paulson OB. Motion or activity: their role in intra- and inter-subject variation in fMRI. Neuroimage 2005;26(3):960–964.

    Article  PubMed  Google Scholar 

  149. Lazeyras F, Blanke O, Zimine I, Delavelle J, Perrig SH, Seeck M. MRI, (1)H-MRS, and functional MRI during and after prolonged nonconvulsive seizure activity. Neurology 2000;55(11):1677–1682.

    Article  PubMed  CAS  Google Scholar 

  150. Kobayashi E, Hawco CS, Grova C, Dubeau F, Gotman J. Widespread and intense BOLD changes during brief focal electrographic seizures. Neurology 2006;66(7):1049–1055.

    Article  PubMed  CAS  Google Scholar 

  151. Baumgartner C, Serles W, Leutmezer F, Pataraia E, Aull S, Czech T et al. Preictal SPECT in temporal lobe epilepsy: regional cerebral blood flow is increased prior to electroencephalography-seizure onset. J Nucl Med 1998;39(6):978–982.

    PubMed  CAS  Google Scholar 

  152. Federico P, Abbott DF, Briellmann RS, Harvey AS, Jackson GD. Functional MRI of the pre-ictal state. Brain 2005;128(Pt 8):1811–1817.

    Article  PubMed  Google Scholar 

  153. Patel MR, Blum A, Pearlman JD, Youssuf N, Ives JR, Saeteng S et al. Echo-planar functional MR imaging of epilepsy with concurrent EEG monitoring. Am J Neuroradiol 1999;20:1916–1919.

    PubMed  CAS  Google Scholar 

  154. Symms MR, Allen PJ, Woermann FG, Polizzi G, Krakow K, Barker GJ et al. Reproducible localization of interictal epileptiform discharges using EEG-triggered fMRI. Phys Med Biol 1999;44(7):N161–N168.

    Article  PubMed  CAS  Google Scholar 

  155. Archer JS, Briellman RS, Abbott DF, Syngeniotis A, Wellard RM, Jackson GD. Benign epilepsy with centro-temporal spikes: spike triggered fMRI shows somato-sensory cortex activity. Epilepsia 2003;44(2):200–204.

    Article  PubMed  Google Scholar 

  156. Archer JS, Briellmann RS, Syngeniotis A, Abbott DF, Jackson GD. Spike-triggered fMRI in reading epilepsy: involvement of left frontal cortex working memory area. Neurology 2003;60(3):415–421.

    Article  PubMed  CAS  Google Scholar 

  157. Al Asmi A, Benar CG, Gross DW, Khani YA, Andermann F, Pike B et al. fMRI Activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes. Epilepsia 2003;44(10):1328–1339.

    Article  PubMed  Google Scholar 

  158. Lazeyras F, Blanke O, Perrig S, Zimine I, Golay X, Delavelle J et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging 2000;12:177–185.

    Article  PubMed  CAS  Google Scholar 

  159. Seeck M, Lazeyras F, Michel CM, Blanke O, Gericke CA, Ives JR et al. Non-invasive epileptic focus localization using EEG-triggered functional MRI and electromagnetic tomography. Electroenceph Clin Neurophysiol 1998;106:508–512.

    Article  PubMed  CAS  Google Scholar 

  160. Baudewig J, Bittermann HJ, Paulus W, Frahm J. Simultaneous EEG and functional MRI of epileptic activity: a case report. Clin Neurophysiol 2001;112:1196–1200.

    Article  PubMed  CAS  Google Scholar 

  161. Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C et al. Event-Related fMRI with Simultaneous and Continuous EEG: description of the method and initial case report. Neuroimage 2001;14(3):780–787.

    Article  PubMed  CAS  Google Scholar 

  162. Bagshaw AP, Hawco C, Benar CG, Kobayashi E, Aghakhani Y, Dubeau F et al. Analysis of the EEG-fMRI response to prolonged bursts of interictal epileptiform activity. Neuroimage 2005;24(4):1099–1112.

    Article  PubMed  Google Scholar 

  163. Laufs H, Hamandi K, Salek-Haddadi A, Kleinschmidt AK, Duncan JS, Lemieux L. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Hum Brain Mapp 2007; 28:1023–1032.

    Article  PubMed  Google Scholar 

  164. Diehl B, Salek-Haddadi A, Fish DR, Lemieux L. Mapping of spikes, slow waves, and motor tasks in a patient with malformation of cortical development using simultaneous EEG and fMRI. Magn Reson Imaging 2003;21(10):1167–1173.

    Article  PubMed  Google Scholar 

  165. Laufs H, Hamandi K, Walker MC, Scott C, Smith S, Duncan JS et al. EEG-fMRI mapping of asymmetrical delta activity in a patient with refractory epilepsy is concordant with the epileptogenic region determined by intracranial EEG. Magn Reson Imaging 2006;24(4):367–371.

    Article  PubMed  Google Scholar 

  166. Morgan VL, Price RR, Arain A, Modur P, Abou-Khalil B. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage 2004;21(1):473–481.

    Article  PubMed  Google Scholar 

  167. Hamandi K, Salek-Haddadi A, Liston A, Laufs H, Fish DR, Lemieux L. fMRI temporal clustering analysis in patients with frequent interictal epileptiform discharges: comparison with EEG-driven analysis. Neuroimage 2005;26(1):309–316.

    Article  PubMed  CAS  Google Scholar 

  168. Aguirre GK, Zarahn E, D’Esposito M. The variability of human, BOLD hemodynamic responses. Neuroimage 1998;8:360–369.

    Article  PubMed  CAS  Google Scholar 

  169. Salek-Haddadi A, Friston KJ, Lemieux L, Fish DR. Studying spontaneous EEG activity with fMRI. Brain Res Rev 2003; 43(1):110–133.

    Article  PubMed  CAS  Google Scholar 

  170. Kobayashi E, Bagshaw AP, Grova C, Dubeau F, Gotman J. Negative BOLD responses to epileptic spikes. Hum Brain Mapp 2006; 27(6):488–497.

    Article  PubMed  Google Scholar 

  171. Lemieux L, Laufs H, Carmichael D, Paul JS, Walker MC, Duncan JS. Noncanonical spike-related BOLD responses in focal epilepsy. Hum Brain Mapp 2008;29(3):329–345.

    Article  PubMed  Google Scholar 

  172. Benar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F et al. The BOLD response to interictal epileptiform discharges. Neuroimage 2002;17(3):1182–1192.

    Article  PubMed  Google Scholar 

  173. Lu Y, Bagshaw AP, Grova C, Kobayashi E, Dubeau F, Gotman J. Using voxel-specific hemodynamic response function in EEG-fMRI data analysis. Neuroimage 2006; 32(1):238–247.

    Article  PubMed  Google Scholar 

  174. Hawco CS, Bagshaw AP, Lu Y, Dubeau F, Gotman J. BOLD changes occur prior to epileptic spikes seen on scalp EEG. Neuroimage 2007;35(4):1450–1458.

    Article  PubMed  Google Scholar 

  175. Makiranta M, Ruohonen J, Suominen K, Niinimaki J, Sonkajarvi E, Kiviniemi V et al. BOLD signal increase preceeds EEG spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia. Neuroimage 2005;27(4):715–724.

    Article  PubMed  Google Scholar 

  176. Siniatchkin M, Moeller F, Jacobs J, Stephani U, Boor R, Wolff S et al Spatial filters and automated spike detection based on brain topographies improve sensitivity of EEG-fMRI studies in focal epilepsy. Neuroimage 2007;37(3):834–843. Corrected Proof:-901.

    Article  PubMed  Google Scholar 

  177. Rosenow F, Luders H. Presurgical evaluation of epilepsy. Brain 2001;124:1683–1700.

    Article  PubMed  CAS  Google Scholar 

  178. Kobayashi E, Bagshaw AP, Benar CG, Aghakhani Y, Andermann F, Dubeau F et al Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 2006;47(2):343–354.

    Article  PubMed  Google Scholar 

  179. Lemieux L, Krakow K, Fish DR. Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization. Neuroimage 2001;14(5):1097–1104.

    Article  PubMed  CAS  Google Scholar 

  180. Bagshaw AP, Kobayashi E, Dubeau F, Pike GB, Gotman J. Correspondence between EEG-fMRI and EEG dipole localisation of interictal discharges in focal epilepsy. Neuroimage 2006;30(2):417–425.

    Article  PubMed  Google Scholar 

  181. Benar CG, Grova C, Kobayashi E, Bagshaw AP, Aghakhani Y, Dubeau F et al. EEG-fMRI of epileptic spikes: Concordance with EEG source localization and intracranial EEG. Neuroimage 2006;30(4):1161–1170.

    Article  PubMed  Google Scholar 

  182. Boor R, Jacobs J, Hinzmann A, Bauermann T, Scherg M, Boor S et al. Combined spike-related functional MRI and multiple source analysis in the non-invasive spike localization of benign rolandic epilepsy. Clin Neurophysiol 2007;118(4):901–909.

    Article  PubMed  CAS  Google Scholar 

  183. Lazeyras F, Blanke O, Perrig S, Zimine I, Golay X, Delavelle J et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging 2000;12(1):177–185.

    Article  PubMed  CAS  Google Scholar 

  184. Zijlmans M, Huiskamp G, Hersevoort M, Seppenwoolde JH, van Huffelen AC, Leijten FS. EEG-fMRI in the preoperative work-up for epilepsy surgery. Brain 2007;130(Pt 9):2343–2353.

    Article  PubMed  Google Scholar 

  185. Krakow K, Wieshmann UC, Woermann FG, Symms MR, McLean MA, Lemieux L et al. Multimodal MR imaging: functional, diffusion tensor, and chemical shift imaging in a patient with localization-related epilepsy. Epilepsia 1999;40(10):1459–1462.

    Article  PubMed  CAS  Google Scholar 

  186. Salek-Haddadi A, Lemieux L, Fish DR. Role of functional magnetic resonance imaging in the evaluation of patients with malformations caused by cortical development. Neurosurg Clin N Am 2002;13(1):63–9, viii.

    Article  PubMed  Google Scholar 

  187. Federico P, Archer JS, Abbott DF, Jackson GD. Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology 2005; 64(7):1125–1130.

    Article  PubMed  Google Scholar 

  188. Kobayashi E, Bagshaw AP, Jansen A, Andermann F, Andermann E, Gotman J et al. Intrinsic epileptogenicity in polymicrogyric cortex suggested by EEG-fMRI BOLD responses. Neurology 2005;64(7):1263–1266.

    Article  PubMed  CAS  Google Scholar 

  189. Kobayashi E, Bagshaw AP, Grova C, Gotman J, Dubeau F. Grey matter heterotopia: what EEG-fMRI can tell us about epileptogenicity of neuronal migration disorders. Brain 2006;129(Pt 2):366–374.

    PubMed  Google Scholar 

  190. Kobayashi E, Bagshaw AP, Gotman J, Dubeau F. Metabolic correlates of epileptic spikes in cerebral cavernous angiomas. Epilepsy Res 2007;73(1):98–103.

    Article  PubMed  Google Scholar 

  191. Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001;345(5):311–318.

    Article  PubMed  CAS  Google Scholar 

  192. Kobayashi E, Bagshaw AP, Benar CG, Aghakhani Y, Andermann F, Dubeau F et al. Temporal and extratemporal BOLD responses to temporal lobe interictal spikes. Epilepsia 2006;47(2):343–354.

    Article  PubMed  Google Scholar 

  193. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA. A default mode of brain function. Proc Natl Acad Sci USA 2001;98(2):676–682.

    Article  PubMed  CAS  Google Scholar 

  194. Lengler U, Kafadar I, Neubauer BA, Krakow K. FMRI correlates of interictal epileptic activity in patients with idiopathic benign focal epilepsy of childhood: a simultaneous EEG-functional MRI study. Clin Neurophysiol 2007;118(4):e70–e51.

    Article  Google Scholar 

  195. Jacobs J, Jacobs J, Boor R, Jansen O, Wolff S, Siniatchkin M et al Localization of epileptic foci in children with focal epilepsies using 3-Tesla simultaneous EEG-fMRI recordings. Clin Neurophysiol 2007; 118(4):e50–e51.

    Article  Google Scholar 

  196. De Tiege X, Laufs H, Boyd SG, Harkness W, Allen PJ, Clark CA et al. EEG-fMRI in children with pharmacoresistant focal epilepsy. Epilepsia 2007;48(2):385–389.

    Article  PubMed  Google Scholar 

  197. Engel J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 2001; 42(6):796–803.

    Article  PubMed  Google Scholar 

  198. Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 2004;127(5):1127–1144.

    Article  PubMed  CAS  Google Scholar 

  199. Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage 2003;20(4):1915–1922.

    Article  PubMed  Google Scholar 

  200. Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F. Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 2005; 102(42):15236–15240.

    Article  PubMed  CAS  Google Scholar 

  201. Laufs H, Lengler U, Hamandi K, Kleinschmidt A, Krakow K. Linking generalized spike-and-wave discharges and resting state brain activity by using EEG/fMRI in a patient with absence seizures. Epilepsia 2006;47(2):444–448.

    Article  PubMed  Google Scholar 

  202. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR. Functional magnetic resonance imaging of human absence seizures. Ann Neurol 2003; 53(5):663–667.

    Article  PubMed  Google Scholar 

  203. Meeren HKM, Pijn JP, Van Luijtelaar ELJM, Coenen AML, Lopes da Silva FH. Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 2002;22(4):1480–1495.

    PubMed  CAS  Google Scholar 

  204. Steriade M, Dossi RC, Nunez A. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci 1991;11(10):3200–3217.

    PubMed  CAS  Google Scholar 

  205. Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L. BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 2008;39(2):608–618.

    Article  PubMed  Google Scholar 

  206. Shmuel A, Augath M, Oeltermann A, Logothetis NK. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 2006;9(4):569–577.

    Article  PubMed  CAS  Google Scholar 

  207. Binnie CD. Cognitive impairment during epileptiform discharges: is it ever justifiable to treat the EEG? Lancet Neurol 2003; 2(12):725–730.

    Article  PubMed  Google Scholar 

  208. Aghakhani Y, Kobayashi E, Bagshaw AP, Hawco C, Benar CG, Dubeau F et al. Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes. Clin Neurophysiol 2006; 117(1):177–191.

    Article  PubMed  CAS  Google Scholar 

  209. Federico P, Archer JS, Abbott DF, Jackson GD. Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T. Neurology 2005; 64(7):1125–1130.

    Article  PubMed  Google Scholar 

  210. Salek-Haddadi A, Lemieux L, Merschhemke M, Diehl B, Allen PJ, Fish DR. EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn Reson Imaging 2003;21(10):1159–1166.

    Article  PubMed  Google Scholar 

  211. Rodionov R, De Martino F, Laufs H, Carmichael DW, Formisano E, Walker M et al. Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI. Neuroimage 2007; 38(3):488–500.

    Article  PubMed  CAS  Google Scholar 

  212. Merlet I, Gotman J. Dipole modeling of scalp electroencephalogram epileptic discharges: correlation with intracerebral fields. Clin Neurophysiol 2001;112(3):414–430.

    Article  PubMed  CAS  Google Scholar 

  213. Liston AD, Salek-Haddadi A, Kiebel SJ, Hamandi K, Turner R, Lemieux L. The MR detection of neuronal depolarization during 3-Hz spike-and-wave complexes in generalized epilepsy. Magn Reson Imaging 2004; 22(10):1441–1444.

    Article  PubMed  Google Scholar 

  214. Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M et al. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 2007;36(1):69–87.

    Article  PubMed  Google Scholar 

  215. Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp 1999;8(2–3):80–85.

    Article  PubMed  CAS  Google Scholar 

  216. Bagshaw AP, Torab L, Kobayashi E, Hawco C, Dubeau F, Pike GB et al. EEG-fMRI using z-shimming in patients with temporal lobe epilepsy. J Magn Reson Imaging 2006; 24(5):1025–1032.

    Article  PubMed  Google Scholar 

  217. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 1995; 34(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  218. Hutton C, Bork A, Josephs O, Deichmann R, Ashburner J, Turner R. Image distortion correction in fMRI: a quantitative evaluation. Neuroimage 2002;16(1):217–240.

    Article  PubMed  Google Scholar 

  219. Niendorf T. On the application of susceptibility-weighted ultra-fast low-angle RARE experiments in functional MR imaging. Magn Reson Med 1999;41(6):1189–1198.

    Article  PubMed  CAS  Google Scholar 

  220. Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R. Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage 2002;15(1):120–135.

    Article  PubMed  CAS  Google Scholar 

  221. Deichmann R, Gottfried JA, Hutton C, Turner R. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 2003;19(2 Pt 1):430–441.

    Article  PubMed  CAS  Google Scholar 

  222. Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D. Modelling large motion events in fMRI studies of patients with epilepsy. Magn Reson Imaging 2007; 25(6):894–901.

    Article  PubMed  Google Scholar 

  223. Liston AD, Lund TE, Salek-Haddadi A, Hamandi K, Friston KJ, Lemieux L. Modelling cardiac signal as a confound in EEG-fMRI and its application in focal epilepsy studies. Neuroimage 2006;30(3):827–834.

    Article  PubMed  CAS  Google Scholar 

  224. Glover GH, Li TQ, Ress D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 2000; 44(1):162–167.

    Article  PubMed  CAS  Google Scholar 

  225. Jager L, Werhahn KJ, Hoffmann A, Berthold S, Scholz V, Weber J et al. Focal epileptiform activity in the brain: detection with spike-related functional MR imaging - preliminary results. Radiology 2002;223:860–869.

    Article  PubMed  Google Scholar 

  226. Benar CG, Gross DW, Wang Y, Petre V, Pike B, Dubeau F et al. The BOLD response to interictal epileptiform discharges. Neuroimage 2002;17(3):1182–1192.

    Article  PubMed  Google Scholar 

  227. Salek-Haddadi A, Lemieux L, Merschhemke M, Friston KJ, Duncan JS, Fish DR. Functional magnetic resonance imaging of human absence seizures. Ann Neurol 2003; 53(5):663–667.

    Article  PubMed  Google Scholar 

  228. Aghakhani Y, Bagshaw AP, Benar CG, Hawco C, Andermann F, Dubeau F et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 2004;127:1127–1144.

    Article  PubMed  CAS  Google Scholar 

  229. Jacobs J, Kobayashi E, Boor R, Muhle H, Stephan W, Hawco C et al. Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia 2007;48(11):2068–78.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Philip Allen for his comments on parts of the manuscript and to Dr. Anna Vaudano and Dr. Serge Vulliemoz for supplying some of the illustrations. Some of the work reported in this chapter was funded through a grant from the Medical Research Council (MRC grant number G0301067) and by the Wellcome Trust. We are grateful to the Big Lottery Fund, Wolfson Trust, and National Society for Epilepsy for supporting the NSE MRI scanner. This work was carried out under the auspices of the UCL/UCLH Biomedical Comprehensive Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Lemieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Thornton, R., Powell, R., Lemieux, L. (2009). fMRI in Epilepsy. In: Filippi, M. (eds) fMRI Techniques and Protocols. Neuromethods, vol 41. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-919-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-919-2_23

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-918-5

  • Online ISBN: 978-1-60327-919-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics