Skip to main content
Log in

Application of contrast agents in CT and MRI (NMR): their potential in imaging of brain tumors

  • Originals
  • Published:
Neuroradiology Aims and scope Submit manuscript

Summary

21 patients with clinical and CT diagnoses of intracranial tumor were studied by MRI (NMR) prior to and after administration of intravenous Gadolinium-DTPA. Resultant MRI images were compared with corresponding CT sections with respect to lesion detection, contrast enhancement, tumor delineation and visualization of perifocal edema. All intracranial lesions shown on CT were identified on MRI. Contrast enhancement in MRI images was achieved in 19 out of 21 patients, as it was also with CT. In these cases improved differentiation between tumor, perifocal edema and adjacent brain structures were obtained. In most cases sufficient visualization of perifocal edema in MRI required T2 weighted images (SE 1600/70) in addition to spin echo scans routinely performed prior to and after contrast medium (SE 400/30 or 800/30). No side effects were encountered following administration of Gadolinium-DTPA. The good tolerance and the efficacy justifies the use of Gadolinium-DTPA for contrast enhanced MRI imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brant-Zawadzki M, Davis PL, Crooks LE, Mills CM, Norman D, Newton TH, Sheldon P, Kaufman L (1983) NMR demonstration of cerebral abnormalities: comparison with CT. AJR 140:847–854

    Google Scholar 

  2. Brant-Zawadzki M, Badami JP, Mills CM, Norman D, Newton TH (1984) Primary intracranial tumor imaging: a comparison of magnetic resonance and CT. Radiology 150:435–440

    Google Scholar 

  3. Bydder GM, Steiner RE, Thomas DJ, Marshall J, Gilderdale DJ, Young IR (1983) Nuclear magnetic resonance imaging of the posterior fossa: 50 cases. Clin Radiol 34:173–188

    Google Scholar 

  4. Bydder GM, Steiner RE, Young IR, Hall AS, Thomas DJ, Marshall J, Pallis CA, Legg NJ (1982) Clinical NMR imaging of the brain: 140 cases. AJR 139:215–236

    Google Scholar 

  5. von Einsiedel Gräfin H, Löffler W (1982) Nuclear magnetic resonance imaging of brain tumours unrevealed by CT. Eur J Radiol 2:226–234

    Google Scholar 

  6. McGinnis BD, Brady TJ, New PFJ, Buonanno FS, Pykett JL, DeLaPaz RL, Kistler JP, Taveras JM (1983) Nuclear magnetic resonance (NMR) imaging of tumors in the posterior fossa. J Comput Assist Tomogr 7:575–584

    Google Scholar 

  7. Randell CP, Collins AG, Young IR, Haywood R, Thomas DJ, McDonnell MJ, Orr JS, Bydder GM, Steiner RE (1983) Nuclear magnetic resonance imaging of posterior fossa tumors. AJR 141:489–496

    Google Scholar 

  8. Zimmerman RA, Bilaniuk LT, Goldberg HI, Grossman RI, Levine RS, Lynch R, Edelstein W, Bottomley P, Redington R (1983) Cerebral NMR imaging: early results with a 0.12 T resistive system. AJR 141:1187–1193

    Google Scholar 

  9. Young IR, Hall AS, Pallis CA, Legg NJ, Bydder GM, Steiner RE (1981) Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet II:1063–1066

    Google Scholar 

  10. Araki T, Inouye T, Suzuki H, Machida T, Iio M (1984) Magnetic resonance imaging of brain tumors: measurement of T1. Radiology 150:95–98

    Google Scholar 

  11. Damadian R (1971) Tumor detection by NMR. Science 171:1151–1153

    Google Scholar 

  12. Mills CM, Crooks LE, Kaufman L, Brant-Zawadzki M (1984) Cerebral abnormalities: use of calculated T1 and T2 magnetic resonance images for diagnosis. Radiology 150:87–94

    Google Scholar 

  13. Kazner E, Aulich A, Grumme T (1976) Results of computerized axial tomography with infratentorial tumors. In: Lanksch W, Kazner E (eds) Cranial computerized tomography. Springer, Berlin Heidelberg New York, pp 90–103

    Google Scholar 

  14. Kazner E, Wende S, Grumme T, Lanksch W, Stochdorph O (1982) Computed tomography in intracranial tumors. Springer, Berlin Heidelberg New York

    Google Scholar 

  15. Lanksch W (1981) Contrast enhancement in brain tumors. In: Felix R, Kazner E, Wegener OH (eds) Contrast media in computed tomography. Excerpta Medica, Amsterdam, pp 117–122

    Google Scholar 

  16. Pople JA, Schneider WG, Bernstein HJ (1959) High-resolution nuclear magnetic resonance. McGraw-Hill, New York Toronto London, pp 209–217

    Google Scholar 

  17. Goldman MR, Hinshaw WS, Pohost GM (1982) Quantification of experimental infarction using NMR imaging and paramagnetic ion contrast enhancement in excised canine hearts. Circulation 66:1012–1016

    Google Scholar 

  18. Brasch RC, Weinmann HJ, Wesbey GE (1984) Contrast-enhanced NMR imaging using Gadolinium-DTPA complex. AJR 142:625–630

    Google Scholar 

  19. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of Gadolinium-DTPA complex: a potential NMR contrast agent. AJR 142:619–624

    Google Scholar 

  20. Felix R, Laniado M, Claussen C, Schörner W, Weinmann HJ, Niendorf HP (1984) Characterization of Gadolinium-DTPA. Basic properties and first clinical results. 7th CARVAT, Rome, Feb 6–10

  21. Schörner W, Felix R, Laniado M, Lange L, Weinmann HJ, Claussen C, Fiegler W, Speck U, Kazner E (1984) Prüfung des kernspintomographischen Kontrastmittels Gadolinium-DTPA am Menschen: Verträglichkeit, Kontrastbeeinflussung und erste klinische Ergebnisse. RÖFO 140:493–500

    Google Scholar 

  22. Carr DH, Brown J, Bydder GM, Weinmann HJ, Speck U, Thomas DJ, Young IR (1984) Clinical use of intravenous Gadolinium-DTPA as a contrast agent in NMR imaging of cerebral tumours. Lancet 1:484–486

    Google Scholar 

  23. Shedahi WH, Toniolo G (1980) Adverse reactions to contrast media. Radiology 137:299–302

    Google Scholar 

  24. Niendorf HP, Weinmann HJ (1983) Ansatzmöglichkeiten für Kontrastmittelanwendungen in der Kernspintomographie. In: Wende S, Thelen M (eds) Kernspintomographie in der Medizin. Springer, Berlin Heidelberg New York Tokyo, pp 123–127

    Google Scholar 

  25. Moeller T (1980) Gmelin Handbuch der anorganischen Chemie: rare earth elements, Part D1. Springer, Berlin Heidelberg New York

    Google Scholar 

  26. Brasch RC (1983) Work in progress: methods of contrast enhancement for NMR imaging and potential applications. Radiology 147:781–788

    Google Scholar 

  27. Stochdorph O (1976) Structural density as an aspect of neuropathology. In: Lanksch W, Kazner E (eds) Cranial computerized tomography. Springer, Berlin Heidelberg New York, 49–51

    Google Scholar 

  28. Lanksch W, Kazner E (1976) CT findings in brain edema. In: Lanksch W, Kazner E (eds) Cranial computerized tomography. Springer, Berlin Heidelberg New York, pp 344–355

    Google Scholar 

  29. Bradley WG, Yadley RA, Wycoff RR (1983) The apppearance of different forms of brain edema on NMR. Society of Magnetic Resonance in Medicine. San Francisco, Aug 16–19

    Google Scholar 

  30. Stevens JM, Ruiz JS, Kendall BE (1983) Observations on peritumoural oedema in meningeoma. Part II: mechanisms of oedema production. Neuroradiology 25:125–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor S. Wende on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claussen, C., Laniado, M., Kazner, E. et al. Application of contrast agents in CT and MRI (NMR): their potential in imaging of brain tumors. Neuroradiology 27, 164–171 (1985). https://doi.org/10.1007/BF00343790

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00343790

Key words

Navigation