Skip to main content
Log in

Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The kinetics of manganese(II) ion uptake and efflux have been investigated using tracer54Mn(II) with glial cells cultured from chick cerebral cortex in chemically defined medium. The initial velocity of Mn(II) uptake versus [Mn(II)] exhibit saturation, with an apparent S0.5≈18(±3) μM. Both the rate and extent of Mn(II) uptake are inhibited by Ca(II), either added externally or preloaded into the glial cells. Preloading of glia with Mn(II) also inhibits the rate of external54Mn(II) uptake. Zn(II) inhibits but Cu(II) activates Mn(II) uptake. Efflux of Mn(II) from preloaded cells occurs as a biphasic process, with rapid release of 30–40% of total cell Mn(II), then much slower release of the remainder. Permeabilization of cells with dextran sulfate also rapidly released ca. 30% of total cell Mn(II). High external Mn(II) enhanced both the rate and extent of Mn(II) efflux. CCCP, an uncoupler of oxidative phosphorylation, inhibited both Mn(II) uptake and efflux significantly, but addition of cyanide, ouabain, insulin, hydrocortisone, K+, or Nd(III) had no effect on either process. Taken together, these data suggest a model in which Mn(II) is brought across the plasma membrane by facilitated diffusion, binds to cytosolic protein sites, and is partitioned into the mitochondria by an active transport mechanism. The fact that the Mn(II) flux rates observed with cultured glia are much faster than those reported for overall uptake and efflux of brain Mn(II)in vivo suggests that the blood-brain barrier may play a significant role in determining these latter rates in whole animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Orent, E. R., and McCollum, E. V. 1931. Effects of deprivation of manganese in the rat. J. Biol. Chem. 92:651–678.

    Google Scholar 

  2. Metal Ions in Neurology and Psychiatry Pages 3–34, 49–68, 121–128,in Gabay, S., harris, J., and Ho, B. T., (eds.) Liss, New York, 1985.

    Google Scholar 

  3. Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition. 4th Edn. Pages 170–195, Academic Press, New York.

    Google Scholar 

  4. Manganese in Metabolism and Enzyme Function in Schramm, V. L., and Wedler, F. C., (eds.) Academic Press, New York, 1986.

    Google Scholar 

  5. Gianutsos, G., Seltzer, M. D., Saymeh, R., Wu, M. W., Michel, R. G. 1985. Brain manganese accumulation following systemic administration of different forms. Arch Toxicol. 57:272–275.

    Google Scholar 

  6. Bonilla, E., Levine, S., and DeSalazar, E. 1978. Intoxicacion cronica con manganeso. Acta Ciet. Venezolana. 29:332–337.

    Google Scholar 

  7. Mena, I., Marin, O., Fuenzalida, S., and Cotzias, G. C. 1967. Chronic manganese poisoning—clinical picture and manganese turnover. Neurology. 17:128–136.

    Google Scholar 

  8. Parenti, M., Flauto, C., Parati, E., Vescovi, A., and Groppetti, A. 1986. Manganese neuro-toxicity: effects of L-DOPA and pargyline treatments. Brain Research. 367:8–13.

    Google Scholar 

  9. Kristensson, K., Eriksson, H., Lundh, B., Plantin, L.-O., Wachtmeister, L., elAzazi, M., Morath, C., and Heilbrom, E. 1986. Effects of MnCl2 on the rat developing nervous system. Acta Pharmacol. et Toxicol. 59:345–348.

    Google Scholar 

  10. Hurley, L. S., Woolley, D. E., Rosenthal, F., and Timiras, P. S. 1963. Influence of manganese on susceptibility of rats to convulsions. Am. J. Physiol. 204:493–496.

    Google Scholar 

  11. Carl, G. F., Keen, C. L., Gallagher, B. B., Clegg, M. S., Littleton, W. H., Flannery, D. B., and Hurley, L. S. 1986. Association of low blood Mn concentrations with epilepsy. Neurology. 36:1584–1587.

    Google Scholar 

  12. Schramm, V. L. 1982. Metabolic regulation: could Mn2+ be involved? Trends Biochem. Sci. 7:369–371.

    Google Scholar 

  13. Williams, R. J. P. 1982. Free manganese (II) and iron (II) cations can act as intracellular cell controls. FEBS Lett. 140:3–10.

    Google Scholar 

  14. McCord, J. M., Boyle, J. A., Day, E. D., Rizollo, L. J., and Salin, M. L. 1977. Michaelson, A. M., McCord, J. M., & Fridovich, I., (eds.)in Superoxide and Superoxide Dismutases Page 129, Academic Press, New York.

    Google Scholar 

  15. Doherty, J. D., Salem, N., Lauter, C. J., and Trams, E. G. 1983. Mn2+-Stimulated ATPase in Rat Brain. Neurochem. Res. 8:493–499.

    Google Scholar 

  16. Wedler, F. C. and Toms, R. 1986. Interactions of Mn(II) with Mammalian Glutamine Synthetase. Pages 221–238,in Schramm, V. L., and Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.

    Google Scholar 

  17. Metabolic Compartmentation in the Brain (Balazs, R. and Cremer, J. E., eds.). Pages 167–184. MacMillan Press, London, 1973.

    Google Scholar 

  18. Norenberg, M., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Research. 161:303–310.

    Google Scholar 

  19. Walker, J. E. 1983. Glutamate, GABA, and CNS Disease: A Review. Neurochem. Res. 8:521–548.

    Google Scholar 

  20. Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A. H., Leroy, M., Grippo, A. A., and Wedler, F. C. 1987. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 12:45–50.

    Google Scholar 

  21. Schramm, V. L., and Brandt, M. 1986. The manganese(II) economy of rat hepatocytes. Fed. Proc. 45:2817–2820.

    Google Scholar 

  22. Stein, W. D. Transport and Diffusion across Cell Membranes, Academic Press, New York, 1986.

    Google Scholar 

  23. Tholey, G., Ledig, M., Kopp, P., Sargentini-Maier, L., Leroy, M., Grippo, A. A., and Wedler, F. C. 1988. Levels and subcellular distribution of physiologically important metal ions in neuronal cells cultured from chick embryo cerebral cortex. Neurochem. Res. 13:1163–1167.

    Google Scholar 

  24. Schramm, V. L. 1985. Evaluation of Mn(II) in metabolic regulation: Analysis of proposed sites for regulation. Pages 1109–1132,in (Schramm, V. L., & Wedler, F. C., eds.) “Manganese in Metabolism and Enzyme Function” Academic Press, New York.

    Google Scholar 

  25. Sensenbrenner, M. 1977. Dissociated brain cells in primary culture, Pages 191–213,in Federoff, S. and Hertz, L., (eds.) Cell, Tissue and Organ Culture in Neurobiology, Academic Press, New York.

    Google Scholar 

  26. Bottenstein, J. E., and Sato, G. H. 1979. Growth of a neuroblastoma cell line in serum-free supplemented medium. Proc. Nat. Acad. Sci., USA. 76:514–517.

    Google Scholar 

  27. Kimelberg, H. K., and Frangakis, M. V. 1985. Furosemide- and bumetimide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res. 361:125–134.

    Google Scholar 

  28. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  29. Allshire, A., and Saris, N.-E. L. 1986. Interaction of manganese with cellular calcium homeostasis. Pages 51–64,in Schramm, V. L., & Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.

    Google Scholar 

  30. Shamoo, A. E. 1986. Mn(II) and Ca(II) transport in mitochondria. Pages 65–80,in Schramm, V. L., and Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.

    Google Scholar 

  31. Brandt, M., and Schramm, V. L. 1986. Mammalian manganese metabolism and manganese uptake and distribution in rat hepatocytes. Pages 3–16,in Schramm, V. L., and Wedler, F. C., (eds.) Manganese in Metabolism and Enzyme Function Academic Press, New York.

    Google Scholar 

  32. Smyers-Verbeke, J., May, C., Drochmans, P. and Massart, D. L. 1977. The Determination of copper, zinc and manganese in subcellular rat liver fractions. Anal. Biochem. 83:746–753.

    Google Scholar 

  33. Konji, V., Montag, A., Sandri, G., Nordenbrand, K., and Ernster, L. 1985. Transport of calcium and manganese by mitochondria from rat liver, heart and brain. Biochimie. 67:1241–1250.

    Google Scholar 

  34. Sakurai, H., Nishida, M., Yoshimura, T., Takada, J., and Koyama, M. 1985. Partition of divalent and total Mn in organs and subcellular organelles of MnCl2-treated rats studied by esr and neutron activation analysis. Biochem. Biophys. Acta. 841:208–214.

    Google Scholar 

  35. Suzuki, H., and Wada, O. 1981. Role of liver lysosomes in uptake and biliary excretion of manganese in mice. Environmental Research 26:521–528.

    Google Scholar 

  36. Goldstein, G. W., and Betz, A. L. 1986. The blood-brain barrier. Scientific Amer. 255:74–83.

    Google Scholar 

  37. Betz, A. L. 1986. Transport of ions across the blood-brain barrier. Fed. Proc. 45:2050–2054.

    Google Scholar 

  38. Betz, A. L., Goldstein, G. W., and Katzman, R. 1989. Blood-Brain-Cerebrospinal Fluid Barriers, Pages 591–608,in Siegel, G. J., et al. (eds.) Basic Neurochemistry, 4th Ed. Raven Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH grant GM-33358 and a Biomedical Research Support Grant from the NIH administered by Penn State.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wedler, F.C., Ley, B.W. & Grippo, A.A. Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. Neurochem Res 14, 1129–1135 (1989). https://doi.org/10.1007/BF00965619

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965619

Keywords

Navigation