Skip to main content
Log in

Left-insular cortex lesions perturb cardiac autonomic tone in humans

  • Research Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

The insular cortex is involved in cardiac regulation. The left insula is predominantly responsible for parasympathetic cardiovascular effects. Damage to this area could shift cardiovascular balance towards increased basal sympathetic tone (a proarrhythmic condition) and contribute to the excess cardiac mortality following stroke. Acute left insular stroke increased basal cardiac sympathetic tone and was associated with a decrease in randomness of heart rate variability. In addition, phase relationships between heart rate and blood pressure were disturbed, implying a disruption of oscillators involved in cardiovascular control. The insula appears to be involved in human heart rate regulation and damage to it may encourage a pro-arrhythmic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade stenosis.N Engl J Med 1991;325: 445–453.

    Google Scholar 

  2. Hass WK, Easton JD, Adams HP et al. A randomised trial comparing ticlopidine hydrochloride with aspirin for the treatment of acute stroke.N Engl J. Med 1989;321: 501–507.

    Google Scholar 

  3. Oppenheimer SM, Hachinski V. The cardiac consequences of stroke.Neurol Clin N Am 1992;10: 167–176.

    Google Scholar 

  4. Kono T, Morita H, Kuroiwa T, Onaka H, Takatsuka H, Fujiwara A. Left ventricular wall motion abnormalities in patients with subarachnoid hemorrhage: neurogenic stunned myocardium.J Am Coll Cardiol 1994;24: 636–640.

    Google Scholar 

  5. Levy AG. The exciting causes of ventricular fibrillation in animals under chloroform anaesthesia.Heart 1913;4: 319–327.

    Google Scholar 

  6. Levy AG. Further remarks on ventricular extrasystole and fibrillation under chloroform.Heart 1919;7: 105–100.

    Google Scholar 

  7. Beattie J, Brow G, Long C. Physiological and anatomical evidence for the existence of nerve tracts connecting the hypothalamus with spinal sympathetic centers.Proc R Soc Lond (Biol) 1930;106: 253–275.

    Google Scholar 

  8. Cechetto DF, Saper CB. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat.J Comp Neurol 1987;262: 27–45.

    Google Scholar 

  9. Oppenheimer SM, Cechetto DF. Cardiac chronotropic organisation of the rat insular cortex.Brain Res 1990;533: 66–72.

    Google Scholar 

  10. Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF. Insular cortex stimulation produces lethal cardiac arrhythmias: a mechanism of sudden death?Brain Res 1991;550: 115–121.

    Google Scholar 

  11. Klouda M. Cardiotoxic effects of stimulation of the stellate ganglion.Ann NY Acad Sci 1969;156: 271–280.

    Google Scholar 

  12. Greenhoot JH, Reichenbach DD. Cardlac injury and subarachnoid hemorrhage: a clinical pathological and physiological correlation.J Neurosurg 1969;30: 521–531.

    Google Scholar 

  13. Oppenheimer SM, Gelb A, Girvin JP, Hachinski V. Cardiovascular effects of human insular stimulation.Neurology 1992;42: 1727–1732.

    Google Scholar 

  14. Zamrini EY, Meador KJ, Loring DW, Nichols FT, Lee GP, Figueroa RE. Unilateral cerebral inactivation produces differential right and left heart rate responses.Neurology 1990;40: 1408–1411.

    Google Scholar 

  15. Lown B, Verrier R. Neural activity and ventricular fibrillation.N Engl J Med 1976;294: 1165–1170.

    Google Scholar 

  16. Magid NM, Eckberg DL, Sprenkel JM. Low dose atropine reduces ventricular vulnerability in normal and ischemic hearts.J Clin Invest 1983;31: 261A.

    Google Scholar 

  17. Oppenheimer SM. The broken heart: noninvasive measurement of cardiac autonomic tone.J R Soc Med 1992;68: 939–941.

    Google Scholar 

  18. Babloyantz A, Destexhe A. Is the normal heart a periodic oscillator?Biol Cybernet 1988;58: 203–211.

    Google Scholar 

  19. Goldberger AL, West BJ. Applications of nonlinear dynamics to clinical cardiology.Ann NY Acad Sci 1987;504: 195–213.

    Google Scholar 

  20. Peng CK, Mietus J, Hausdorff JM, Havlin S, Stanley HE, Goldberger AL. Long-range anticorrelations and non-Gaussian behavior of the heartbeat.Phys Rev Lett 1993;70: 1343–1346.

    Google Scholar 

  21. Skinner JE. Neurocardiology: Brain mechanisms underlying fatal cardiac arrhythmias.Neurol Clin 1993;11(2): 325–351.

    Google Scholar 

  22. Yamamoto Y, Hughson RL, Sutton JR, Houston CS, Cymerman A, Fallen EL, Kamath MV. Operation Everest II: an indication of deterministic chaos in human heart rate variability at simulated extreme altitude.Biol Cybernet 1993;69: 205–212.

    Google Scholar 

  23. Kanters JK, Holstein-Rathlou NH, Anger E. Lack of evidence for low-dimensional chaos in heart rate variability.J Cardiovasc Electrophysiol 1994;5: 591–601.

    Google Scholar 

  24. Lefebvre JH, Goodings DA, Kamath MV, Fallen EL. Predictability of normal heart rhythms and deterministic chaos.Chaos 1993;3: 267–276.

    Google Scholar 

  25. Fleisher LA, Pincus SM, Rosenbaum SH. Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction.Anesthesiology 1993;78; 683–692.

    Google Scholar 

  26. Pincus SM. Approximate entropy as a measure of system complexity.Proc Natl. Acad Sci USA 1991;88: 2297–2301.

    Google Scholar 

  27. Kedem B.Time Series Analysis by Higher Order Crossings. New York: IEEE Press, 1994.

    Google Scholar 

  28. Martin WM, Oppenheimer, SM. Power spectrum analysis of heart rate variability in patients with insular cortex lesions.Soc Neurosci Abstr 1993: 391–392.

  29. Kedem G, Shelhamer M, Fleisher L, Martin W, Oppenheimer SM. Can complexity analysis of heart rate variability detect a perturbation in neural control of the heart?Soc Neurosci Abstr 1994;20: 107.

    Google Scholar 

  30. Martin WM. Changes in cardiovascular autonomic tone in patients suffering from left insular cortex lesions, as studied using a specially designed portable cardiovascular autonomic data acquisition platform. Thesis: Master of Science in Engineering. Johns Hopkins University. 1993.

  31. Kurki T, Smith NT, Head N, Dec Silver H, Quinn A. Noninvasive continuous blood pressure measurement from the finger: optimal measurement conditions and factors affecting reliability.J Clin Monit 1987;3: 6–13.

    Google Scholar 

  32. Schwartz JB, Gibb WJ, Tran T. Aging effects on heart rate.J Gerontol 1991;46: M99–106.

    Google Scholar 

  33. Berger RD, Akselrod S et al. An efficient algorithm for spectral analysis of heart rate variability.IEEE Trans Biomed Eng 1986;MBE-33: 900–904.

    Google Scholar 

  34. Blackman RB, Turkey JW.The Measurement of Power Spectra from the Point of View of Communications Engineering. New York: Dover, 1959.

    Google Scholar 

  35. Albrecht P, Cohen R. Estimation of heart rate power spectrum bands from real-world data: dealing with ectopic beats and noisy data.Comput Cardiol 1988;15: 311–314.

    Google Scholar 

  36. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function.Crit Rev Biomed Eng 1993;21(3): 245–311.

    Google Scholar 

  37. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors.Physica D 1983;9: 189–208.

    Google Scholar 

  38. Gebber GL, Barman SM. A physiologically-based model of the brain-stem generator of sympathetic nerve discharge. In: Ciriello, J, Caverson M, Polosa C, eds.Progress in Brain Research. 1989;81: 131–139.

  39. Barron SA, Rogovski Z, Hemli J. Autonomic consequences of hemispheric infarction.Stroke 1994;25: 113–116.

    Google Scholar 

  40. Sander D, Klinghoffer J. Changes of circadian blood pressure patterns after hemodynamic and thromboembolic brain infarction.Stroke 1994;25: 1730–1737.

    Google Scholar 

  41. Vingerhoets F, Bogousslavsky J, Regli F, van Malle G. Atrial fibrillation after acute stroke.Stroke 1993;24: 26–30.

    Google Scholar 

  42. Hachinski VC, Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto. Asymmetry of sympathetic consequences of experimental stroke.Arch Neurol 1992;49: 697–702.

    Google Scholar 

  43. Pagani M, Lombardi F, Guzzetti S. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog.Circ Res 1986;59: 178–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppenheimer, S.M., Kedem, G. & Martin, W.M. Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clinical Autonomic Research 6, 131–140 (1996). https://doi.org/10.1007/BF02281899

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02281899

Key words

Navigation