Skip to main content
Log in

Abstract

The purpose of this study was to evaluate a non-flow related magnetic resonance imaging method to visualize small veins independent of arteries in the human brain. A long TE, high-resolution 3D gradient echo MR acquisition was used to highlight venous information. The method is based on the paramagnetic property of deoxyhemoglobin and the resulting phase difference between veins and brain parenchyma at long echo times. The MR magnitude images were masked with a phase mask filter to enhance small structure visibility.. Venous information down to sub-pixel vessel diameters of several hundred microns is visible. Venous data are displayed in an angiographic manner using a minimum intensity projection algorithm. Both superficial veins and deep white matter veins are visible. The method has been successfully applied in volunteers. Preliminary results in patients with cerebral arteriovenous malformations indicate its potential in clinical applications. The proposed method is easy to implement and does not require administration of a contrast agent or application of specially designed rf pulses to highlight the veins. Rather it exploits the intrinsic magnetic properties (BOLD-effect) and the prolonged T 2* of venous blood. The method may be of diagnostic potential in the assessment of arteriovenous malformations or other vascular venous lesions. © 1998 Elsevier Science B.V. All rights reserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prince MR. Gadolinium-enhanced MR aortography. Radiology 1994;191:155–64.

    PubMed  CAS  Google Scholar 

  2. Padayachee TS, Bingham JB, Graves MJ, Colchester ACF, Cox TCS. Durai sinus thrombosis. Diagnosis and follow-up by magnetic resonance angiography and imaging. Neuroradiology 1991;33:165–7.

    Article  PubMed  CAS  Google Scholar 

  3. Medlock MD, Olivero WC, Hanigan WC, Wright RM, Winek SJ. Children with cerebral venous thrombosis diagnosed with MRI and magnetic resonance angiography. Neurosurgery 1992;31:870–6.

    Article  PubMed  CAS  Google Scholar 

  4. Augustyn G, Scott J, Olson E, Gilmore R, Edwards M. Cerebral venous angiomas: MR imaging. Radiology 1985;156:391–5.

    PubMed  CAS  Google Scholar 

  5. Knopp EA. Venous Disease and tumors. MRI Clinics of North America 1995;3:509–28.

    PubMed  CAS  Google Scholar 

  6. Stevenson J, Knopp EA, Litt AW. MP-RAGE Subtraction venography: A new technique. Journal of Magnetic Resonance Imaging 1995;5:239–41.

    Article  PubMed  CAS  Google Scholar 

  7. Kuppusamy K, Lin W, Cizek GR, Haacke EM. In vivo regional cerebral blood volume: quantitative assessment with 3D T1- weighted pre- and postcontrast MR Imaging. Radiology 1996;201(l):106–12.

    PubMed  CAS  Google Scholar 

  8. Wright GA, Nishimura DG, Macovski A. Flow-independent magnetic resonance projection angiography. Magn Reson Med 1991;17:126–40.

    Article  PubMed  CAS  Google Scholar 

  9. Cho ZH, Ro YM, Lim TH. NMR venography using the susceptibility effect produced by deoxyhemoglobin. Magn Reson Med 1992;28:25–38.

    Article  PubMed  CAS  Google Scholar 

  10. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14:68–78.

    Article  PubMed  CAS  Google Scholar 

  11. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM. Small Vessels in the Human Brain: MR Venography with Deoxyhemoglobin as an Intrinsic Contrast Agent. Radiology 1997;204:272–7.

    PubMed  CAS  Google Scholar 

  12. Salamon G, Huang YP. Radiologic Anatomy of the Brain. Berlin: Springer-Verlag, 1976.

    Google Scholar 

  13. Reichenbach JR, Venkatesan R, Yablonskiy DA, Thompson MR, Lai S, Haacke EM. Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imag 1997;7:266–79.

    Article  CAS  Google Scholar 

  14. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygénation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochem Biophys Acta 1982;714:265–70.

    PubMed  CAS  Google Scholar 

  15. Haacke EM, Hopkins AL, Lai S, et al. 2D and 3D high resolution gradient echo functional imaging of the brain: Venous contributions to signal in motor cortex studies. NMR Biomed 1994;7:54–62.

    Article  PubMed  CAS  Google Scholar 

  16. Haacke EM, Lai S, Yablonskiy DA, Lin W. In vivo validation of the BOLD mechanism: A review of signal changes in gradient echo functional MRI in the presence of flow. Int J Imag Sys Techn 1995;6(2/3):153–63.

    Article  Google Scholar 

  17. Haacke EM, Lenz GW, Nelson AD. Pseudo-gating: Elimination of periodic motion artifacts in magnetic resonance imaging without gating. Magn Reson Med 1987;4:162–74.

    Article  PubMed  CAS  Google Scholar 

  18. McCormick WF. Pathology of vascular malformations of the brain. In: Wilson CB, Stein BM, editors. Intracranial Arteriovenous Malformations. Baltimore: Williams and Wilkins, 1984:44–63.

    Google Scholar 

  19. Luessenhop AJ. Natural history of cerebral arteriovenous malformations. In: Wilson CB, Stein BM, editors. Intracranial Arteriovenous Malformations. Baltimore: Williams and Wilkins, 1984:12–23.

    Google Scholar 

  20. Davis CH, Symon L. The management of cerebral arteriovenous malformations. Acta Neurochir 1985;74:4–11.

    Article  CAS  Google Scholar 

  21. Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: A 24-year-up assessment. J Neurosurg 1990;73:387391.

    Google Scholar 

  22. Essig M, Engenhart R, Knopp MV, et al. Cerebral arteriovenous malformations: Improved nidus demarcation by means of dynamic tagging MR-angiography. Magn Reson Imag 1996;14:227–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen R. Reichenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichenbach, J.R., Essig, M., Haacke, E.M. et al. High-resolution venography of the brain using magnetic resonance imaging. MAGMA 6, 62–69 (1998). https://doi.org/10.1007/BF02662513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02662513

Keywords

Navigation