Skip to main content
Log in

N-acetylaspartylglutamate,N-acetylaspartate, andN-acetylated alpha-linked acidic dipeptidase in human brain and their alterations in Huntington and Alzheimer diseases

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

There is mounting evidence, primarily from research in experimental animals, that the dipeptideN-acetylaspartylglutamate (NAAG) and its catabolic enzyme,N-acetylated α-linked acid dipeptidase (NAALADase), are involved in glutamatergic neurotransmission. Previous studies in neuropsychiatric disorders associated with the dysregulation of glutamatergic neurotransmission, such as schizophrenia, seizure disorders, and amyotrophic lateral sclerosis (ALS), have revealed region-specific alterations in the levels of NAAG and in the activity of NAALADase. To establish better the cellular localization of these and related parameters in human brain, we have examined their alterations in two well-characterized selective neurodegenerative disorders, Huntington Disease (HD) and Alzheimer Disease (AD). Brain regions from postmortem controls and HD- or AD-affected individuals were assayed to determine the activity of NAALADase as well as the levels of NAAG,N-acetylaspartate (NAA), and several amino acids. The relationships between changes in these neurochemical parameters and changes in neuronal and glial cell density were determined. The present report demonstrates that the decreases in the levels of NAAG and NAA and in the activity of NAALADase in AD and HD brain correlate primarily with neuronal loss. By inference, the results suggest that NAAG and NAA have primarily a neuronal localization in human brain and that there is a close relationship between NAAG and the dipeptidase NAALADase in populations of affected neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ball M. J. (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with aging and dementia. A quantitative study.Acta Neuropathol. 37, 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Blakely R. D. and Coyle J. T. (1988) The neurobiology of N-acetylaspartyl-glutamate, inInternational Review of Neurobiology, vol. 30 (Smythies J. R. and Bradley R., eds.), pp. 39–100, Academic, New York.

    Google Scholar 

  • Blakely R. D., Robinson M. B., Thompson R. C., and Coyle J. T. (1988) Hydrolysis of the brain dipeptide N-acetyl-L-aspartyl-L-glutamate: subcellular and regional distribution, ontogeny and the effects of lesions on N-acetylated-alpha-linked acidic dipeptidase activity.J. Neurochem. 50, 1200–1209.

    Article  PubMed  CAS  Google Scholar 

  • Braak H. and Braak E. (1990) Alzheimer’s disease; striatal amyloid deposits and neurofibrillary changes.J. Neuropathol. Exp. Neurol. 49, 215–224.

    PubMed  CAS  Google Scholar 

  • Braak H., Braak E., and Bohl J. (1993) Staging of Alzheimer related cortical destruction.Eur. Neurol. 33, 403–408.

    PubMed  CAS  Google Scholar 

  • Bruyn G. W., Bots G., and Dom R. (1979) Huntington’s chorea: current neuropathological status.Advances Neurol.,23, 83–93.

    Google Scholar 

  • Chessell I. P., Francis P. T., Pangalos M. N., Pearson R. C., and Bowen D. M. (1993) Localisation of muscarinic (m1) and other neurotransmitter receptors on corticofugal-projecting pyramidal neurons.Brain Res. 632, 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Cudkowicz M. and Kowall N. (1990) Degeneration of pyramidal projection neurons in Huntington’s disease cortex.Ann. Neurol. 27, 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Ebisu T., Rooney W. D., Graham S. H., Weiner M. W., and Maudsley A. A. (1994) N-acetyl-aspartate as an in vivo marker of neuronal viability in kainate-induced status epilepticus—H-1 magnetic resonance spectroscopic imaging.J. Cereb. Blood Flow Metab. 14, 373–382.

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic P. S. and Selemon L. D. (1986) Topography of corticostriatal projections in nonhuman primates and implications for functional parcellation of the neostriatum, inCerebral Cortex, vol. 5 (Jones E. G. and Peters A., eds.), pp. 447–466, Plenum, New York.

    Google Scholar 

  • Graveland G. A., Williams R. S., and DiFiglia M. (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Hungtington’s disease.Science 227, 770–773.

    Article  PubMed  CAS  Google Scholar 

  • Hedreen J. C., Peyser C. E., Folstein S. E., and Ross C. A. (1991) Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease.Neurosci. Lett. 133, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Heinsen H., Strik M., Bauer M., Luther K., Ulmar G., Gangnus D., Jungkunz G., Eisenmenger W., and Gotz M. (1994) Cortical and striatal neuron number in Huntington’s disease.Acta Neuropathol. 88, 320–333.

    Article  PubMed  CAS  Google Scholar 

  • Herz E. and Funfgeld E. (1923) Zur Klinik und Pathologie der Alzheimerschen Krankheit.Arch. Psychiatr. Nervenkr. 4, 633–664.

    Google Scholar 

  • Hof P. R., Cox K., and Morrison J. H. (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: I. Superior frontal and inferior temporal cortex.J. Comp. Neurol. 301, 44–54.

    Article  PubMed  CAS  Google Scholar 

  • Jaarsma D., Veenma-van der Duin L., and Korf J. (1994) N-acetylaspartate and N-acetylaspartylglutamate levels in Alzheimer’s disease post-mortem brain tissue.J. Neurol. Sci. 127, 230–233.

    Article  PubMed  CAS  Google Scholar 

  • Jones E. G. (1984) Laminar distribution of cortical efferent cells, inCerebral Cortex, vol. 1 (Peters A. and Jones E. G., eds.), pp. 521–553, Plenum, New York.

    Google Scholar 

  • Khachaturian Z. S. (1985) Diagnosis of Alzheimer’s disease.Arch. Neurol. 42, 1097–1105.

    PubMed  CAS  Google Scholar 

  • Klunk W. E., Panchalingam K., Moossy J., McClure R. J., and Pettegrew J. W. (1992) N-acetyl-L-aspartate and other amino acid metabolites in Alzheimer’s disease brain: a preliminary proton nuclear magnetic resonance study.Neurology 42, 1578–1585.

    PubMed  CAS  Google Scholar 

  • Koller K., Zaczek R., and Coyle J. T. (1984) N-acetyl-aspartyl-glutamate: Regional levels in rat brain and the effects of brain lesions as determined by a new HPLC method.J. Neurochem. 43, 1136–1142.

    Article  PubMed  CAS  Google Scholar 

  • Korf J. L., Veenma-van der Duin L., Venema K., and Wolf J. H. (1991) Automated precolumn fluorescence labelling by carbodiimide activation of N-acetylaspartate and N-acetylaspartylglutamate applied to an HPLC brain tissue analysis.Anal. Biochem. 196, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Kowall N. W. and Beal M. F. (1991) Glutamate-, glutaminase-, and taurine-immunoreactive neurons develop neurofibrillary tangles in Alzheimer’s disease.Ann. Neurol. 29, 162–167.

    Article  PubMed  CAS  Google Scholar 

  • Künzle H. (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study inMacaca vascicularis.Brain Res. 88, 195–209.

    Article  PubMed  Google Scholar 

  • Lange H. W. (1983) Quantitative changes of telencephalon, diencephalon and mesencephalon in Huntington’s chorea, postencephalitic, and idiopathic parkinsonism.Verh. Anat. Ges. 75, 923–925.

    Google Scholar 

  • Lowe S. L, Bowen D. M., Francis P. T., and Neary D. (1990) Ante mortem cerebral amino acid concentrations indicate selective degeneration of glutamate-enriched neurons in Alzheimer’s disease.Neuroscience 38, 571–577.

    Article  PubMed  CAS  Google Scholar 

  • Meyerhoff J. L., Carter R. C., Yourick D. L., Slusher B. S., and Coyle J. T. (1992) Genetically epilepsy-prone rats have increased brain regional activity of an enzyme which liberates glutamate from N-acetyl-aspartyl-glutamate.Brain Res. 593, 140–143.

    Article  PubMed  CAS  Google Scholar 

  • Mirra S. S., Hart M. N., and Terry R. D. (1993) Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists.Arch. Pathol. Lab. Med. 117, 132–144.

    PubMed  CAS  Google Scholar 

  • Mirra S. S., Heyman A., McKeel D., Sumi S. M, Crain B. J., Brownlee L. M., Vogel F. S., Hughes J. P., van Belle G., and Berg L. (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease.Neurology 41, 479–486.

    PubMed  CAS  Google Scholar 

  • Moffett J. R., Namboodiri M. A., and Neale J. H. (1993) Enhanced carbodiimide fixation for immunohistochemistry: application to the comparative distributions of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat brain.J. Histochem. Cytochem. 41, 559–570.

    PubMed  CAS  Google Scholar 

  • Moffett J. R. and Namboodiri M. A. A. (1995) Differential distribution of N-acetylaspartylglutamate and N-acetylaspartate immunoreactivities in rat forebrain.J. Neurocytol. 24, 409–433.

    Article  PubMed  CAS  Google Scholar 

  • Moffett J. R., Namboodiri M. A. A., Cangro C. B., and Neale J. H. (1991) Immunohistochemical localization of N-acetylaspartate in rat brain.NeuroReport 2, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Myers R. H., Vonsattel J. P., Paskevich P. A., Kiely D. K., Stevens T. J., Cupples L. A., Richardson E. P., and Bird E. D. (1991) Decreased neuronal and increased oligodendroglial densities in Huntington’s disease caudate nucleus.J. Neuropathol. Exp. Neurol. 50, 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Nadler J. V. and Cooper J. R. (1972) N-acetyl-L-aspartic acid content of human neural tumours and bovine peripheral neuvous tissues.J. Neurochem. 19, 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Passani L., Vonsattel J. P. and Coyle J. T. Distribution of N-acetylaspartylglutamate immunoreactivities in human brain and its alteration in neuro degenerative disorders.Brain Res., in press.

  • Perry T. L. and Hansen S. (1990) What excitotoxin kills striatal neurons in Huntington’s disease? Clues from neurochemical studies.Neurology 40, 20–24.

    PubMed  CAS  Google Scholar 

  • Perry T. L., Hansen S., and Gandham S. S. (1981) Postmortem changes of amino compounds in human and rat brain.J. Neurochem. 36, 406–412.

    Article  PubMed  CAS  Google Scholar 

  • Pope A., Amelotte J. A., Belfer H., and Nixon R. A. (1981) Protease activities in normal and schizophrenic human prefrontal cortex and white matter.Neurochem. Res. 6, 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  • Procter A. W., Lowe S. L., Palmer A. M., Francis P. T., Esiri M. M., Stratmann G. C., Najlerahim A., Patel A. J., Hunt A., and Bowen D. M. (1988) Topographical distribution of neurochemical changes in Alzheimer’s disease.J. Neurol. Sci. 84, 125–140.

    Article  PubMed  CAS  Google Scholar 

  • Puttfarcken P. S., Handen J. S., Montgomery D. T., Coyle J. T., and Werling L. L. (1993) N-acetyl-aspartylglutamate modulation of N-methyl-D-aspartate-stimulated [3H]norepinephrine release from rat hippocampal slices.J. Pharmacol. Exp. Ther. 266, 796–803.

    PubMed  CAS  Google Scholar 

  • Reynolds G. P. and Pearson S. J. (1987) Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington’s disease brain.Neurosci. Lett. 78, 233–238.

    Article  PubMed  CAS  Google Scholar 

  • Robinson M., Blakely S., Couto R., and Coyle J. T. (1987) Hydrolysis of the brain peptide N-acetyl-L-aspartyl-L-glutamate.J. Biol. Chem. 262, 14,498–14,506.

    CAS  Google Scholar 

  • Sekiguchi M., Okamoto K., and Sakai Y. (1989) Low-concentration N-acetylaspartylglutamate suppresses the climbing fiber response of Purkinje cells in guinea pig cerebellar slices and the response to excitatory amino acids ofXenopus laevis oocytes injected with cerebellar mRNA.Brain Res. 482, 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Sekiguchi M., Wada K., and Wenthold R. J. (1992) N-acetylaspartylglutamate acts as an agonist upon homomeric NMDA receptor (NMDAR 1) expressed inXenopus oocytes.FEBS Lett. 311, 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Selemon L. D. and Goldman-Rakic P. (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey.J. Neurosci. 5, 776–794.

    PubMed  CAS  Google Scholar 

  • Simmons M. L., Frondoza C. G., and Coyle J. T. (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies.Neuroscience 45, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Sotrel A., Paskevich P. A., Kiely D. K., Bird E. D., Williams R. S., and Myers R. H. (1991) Morphometric analysis of the prefrontal cortex in Huntington’s disease.Neurology 41, 1117–1123.

    PubMed  CAS  Google Scholar 

  • Sotrel A., Williams R. S., Kaufmann W. E., and Myers R. H. (1993) Evidence for neuronal degeneration and dendritic plasticity in cortical pyramidal neurons of Huntington’s disease: a quantitative Golgi study.Neurology 43, 2088–2096.

    PubMed  CAS  Google Scholar 

  • Stauch-Slusher B., Tsai G., Voo G., and Coyle J. T. (1992) Immunohistochemical localization of the N-acetyl-aspartyl-glutamate (NAAG) hydrolyzing enzyme N-acetylated-alpha-linked acidic dipeptidase (NAALADase).J. Comp. Neurol. 315, 217–229.

    Article  Google Scholar 

  • Swaab D. F. and Uylings H. B. M. (1987) Density measures: parameters to avoid.Neurobiol. Aging 8, 574–576.

    Article  PubMed  CAS  Google Scholar 

  • Terry R. D., Peck A., De Terese R., Schlechter R., and Horoupian D. S. (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type.Ann. Neurol. 10, 184–192.

    Article  PubMed  CAS  Google Scholar 

  • Tieman S. B., Neale J. H., and Tieman D. G. (1991) N-acetylaspartylglutamate immunoreactivity in neurons of the monkey’s visual pathway.J. Comp. Neurol. 313, 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Tsai G. and Coyle J. T. (1995) N-acetylaspartate in neuropsychiatric disorders.Prog. Neurobiol. 46, 531–540.

    Article  PubMed  CAS  Google Scholar 

  • Tsai G., Passani L., Slusher B., Carter R., Kleinman J., and Coyle J. (1995) Changes of excitatory neurotransmitter metabolism in schizophrenic brains.Arch. Gen. Psychiatry 52, 829–836.

    PubMed  CAS  Google Scholar 

  • Tsai G., Slusher B., Sim L., Hedreen J. C., Rothstein J. D., Kuncl R., and Coyle J. T. (1991) Reductions in acidic amino acids and N-acetyl-aspartyl-glutamate in amyotrophic lateral sclerosis CNS.Brain Res. 556, 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsai G., Stauch B. L., Vornov J. J., Deshpande J. K., and Coyle J. T. (1990) Selective release of N-acetylaspartylglutamate from rat optic nerve terminals in vivo.Brain Res. 518, 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Urenjak J., Williams S. R., Gadian D. G., and Noble M. (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neuronal cell types.J. Neurosci. 13, 981–989.

    PubMed  CAS  Google Scholar 

  • Uzman L. L., Rumley M. K., and Van der Noort S. (1962) Properties and classification of some brain peptidases.J. Neurochem. 9, 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Vereecken T. H. L. G., Vogels O. J. M., and Nieuwenhuys R. (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease.Neurobiol. Aging 15, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J., Aizawa H., Ge P., DiFiglia M., McKee A. C., MacDonald M., Gusella J. F., Landwehrmeyer B., Bird E. D., Richardson E. P., Jr. and Hedley-Whyte E. T. (1995) An improved approach to prepare human brains for research.J. Neuropath. Exp. Neurol. 54, 42–56.

    PubMed  CAS  Google Scholar 

  • Vonsattel J.-P., Myers R. H., Stevens T. J., Ferrante R. J., Bird E. D., and Richardson E. P. (1985) Neuropathological classification of Huntington’s disease.J. Neuropath. Exp. Neurol. 44, 559–577.

    PubMed  CAS  Google Scholar 

  • West M. J. (1994) Advances in the study of age-related neuron loss.Seminars Neurosci. 6, 403–411.

    Article  Google Scholar 

  • Westbrook G. L., Mayer M. L., Namboodiri M. A., and Neale J. H. (1986) High concentrations of N-acetylaspartylglutamate (NAAG) selectively activate NMDA receptors on mouse spinal cord neurons in cell culture.J. Neurosci. 6, 3385–3392.

    PubMed  CAS  Google Scholar 

  • Williamson L. C. and Neale J. H. (1988a) Ultrastructural localization of N-acetylaspartyl-glutamate in synaptic vesicles of retinal neurons.Brain Res. 456, 375–381.

    Article  PubMed  CAS  Google Scholar 

  • Williamson L. C. and Neale J. H. (1988b) Calcium-dependent release of N-acetylaspartyl-glutamate from retinal neurons upon depolarization.Brain Res. 475, 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Wroblewska B., Wroblewski J. T., Saab O. H., and Neale J. H. (1993) N-acetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells.J. Neurochem. 61, 943–948.

    Article  PubMed  CAS  Google Scholar 

  • Zollinger M., Amsler U., Do K. Q., Streit P., and Ceunod M. (1988) Release of N-acetylaspartylglutamate on depolarization of rat brain slices.J. Neurochem. 51, 1919–1923.

    Article  PubMed  CAS  Google Scholar 

  • Zollinger M., Brauchlitheotokis J., Gutteckamsler U., Do K. Q., Streit P., and Cuenod M. (1994) Release of N-acetylaspartylglutamate from slices of rat cerebellum, striatum, and spinal cord, and the effect of climbing fiber deprivation.J. Neurochem. 63, 1133–1142.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph T. Coyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passani, L.A., Vonsattel, J.P.G., Carter, R.E. et al. N-acetylaspartylglutamate,N-acetylaspartate, andN-acetylated alpha-linked acidic dipeptidase in human brain and their alterations in Huntington and Alzheimer diseases. Molecular and Chemical Neuropathology 31, 97–118 (1997). https://doi.org/10.1007/BF02815236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02815236

Index Entries

Navigation