Skip to main content

Advertisement

Log in

Evaluation of an Artificial Intelligence-Based 3D-Angiography for Visualization of Cerebral Vasculature

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

The three-dimensional digital subtraction angiography (3D DSA) technique is the current standard and is based on both mask and fill runs to enable the subtraction technique. Artificial intelligence (AI)-based 3D angiography (3DA) was developed to reduce radiation dosage because only one contrast-enhanced run of the C‑arm system is required for reconstruction of DSA-like 3D volumes. The aim was the evaluation of this algorithm regarding its diagnostic information.

Methods

3D DSA datasets without pathologic findings were reconstructed both with subtraction technique and with the AI-based algorithm. Corresponding reconstructions were evaluated by 2 neuroradiologists with respect to image quality (IQ), visualization of major segments of the circle of Willis (ICA = C4-C7; OphA; ACA = A1-A2, MCA = M1-M2; VA = V4; BA; AICA; SUCA; PCA = P1-P2), identifiability of perforators (lenticulostriate/thalamoperforating arteries) and vessel diameters (ICA = C4; MCA = M1; BA; PCA = P1).

Results

In total 15 datasets were successfully reconstructed as 3D DSA and 3DA with diagnostic image quality. All major segments of the circle of Willis and perforators were comparably visualized with 3DA. Quantitative analysis of vessel diameters in 3D DSA and 3DA datasets was equivalent and did not show relevant differences (rICA = 0.901, p = 0.001; rM1 = 0.951, p = 0.001; rBA = 0.906, p = 0.001; rP1 = 0.991, p = 0.001).

Conclusions

The use of 3DA demonstrated reliable visualization of cerebral vasculature with respect to quantitative and qualitative parameters. Therefore, 3DA is a promising method that might help to reduce patient radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wong SC, Nawawi O, Ramli N, Abd Kadir KA. Benefits of 3D rotational DSA compared with 2D DSA in the evaluation of intracranial aneurysm. Acad Radiol. 2012;19:701–7.

    Article  PubMed  Google Scholar 

  2. van Rooij WJ, Sprengers ME, de Gast AN, Peluso JP, Sluzewski M. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol. 2008;29:976–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mistretta CA, Crummy AB, Strother CM. Digital angiography: A perspective. Radiology. 1981;139:273–6.

    Article  CAS  PubMed  Google Scholar 

  4. Hochmuth A, Spetzger U, Schumacher M. Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. AJNR Am J Neuroradiol. 2002;23:1199–205.

    PubMed  PubMed Central  Google Scholar 

  5. Anxionnat R, Bracard S, Ducrocq X, Trousset Y, Launay L, Kerrien E, Braun M, Vaillant R, Scomazzoni F, Lebedinsky A, Picard L. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology. 2001;218:799–808.

    Article  CAS  PubMed  Google Scholar 

  6. Missler U, Hundt C, Wiesmann M, Mayer T, Brückmann H. Threedimensional reconstructed rotational digital subtraction angiography in planning treatment of intracranial aneurysms. Eur Radiol. 2000;10:564–8.

    Article  CAS  PubMed  Google Scholar 

  7. Struffert T, Hauer M, Banckwitz R, Köhler C, Royalty K, Doerfler A. Effective dose to patient measurements in flat-detector and multislice computed tomography: a comparison of applications in neuroradiology. Eur Radiol. 2014;24:1257–65.

    Article  PubMed  Google Scholar 

  8. Pearl MS, Torok CM, Messina SA, Radvany M, Rao SN, Ehtiati T, Thompson CB, Gailloud P. Reducing radiation dose while maintaining diagnostic image quality of cerebral three-dimensional digital subtraction angiography: an in vivo study in swine. J Neurointerv Surg. 2014;6:672–6.

    Article  PubMed  Google Scholar 

  9. Pearl MS, Torok C, Katz Z, Messina SA, Blasco J, Tamargo RJ, Huang J, Leigh R, Zeiler S, Radvany M, Ehtiati T, Gailloud P. Diagnostic quality and accuracy of low dose 3D-DSA protocols in the evaluation of intracranial aneurysms. J Neurointerv Surg. 2015;7:386–90.

    Article  PubMed  Google Scholar 

  10. Grass M, Koppe R, Klotz E, Proksa R, Kuhn MH, Aerts H, Op de Beek J, Kemkers R. Three-dimensional reconstruction of high contrast objects using C‑arm image intensifier projection data. Comput Med Imaging Graph. 1999;23:311–21.

    Article  CAS  PubMed  Google Scholar 

  11. Raabe A, Beck J, Rohde S, Berkefeld J, Seifert V. Three-dimensional rotational angiography guidance for aneurysm surgery. J Neurosurg. 2006;105:406–11.

    Article  PubMed  Google Scholar 

  12. Gosch D, Kurze W, Deckert F, Schulz T, Patz A, Kahn T. Radiation exposure with 3D rotational angiography of the skull. Rofo. 2006;178:880–5.

    Article  CAS  PubMed  Google Scholar 

  13. Beck J, Rohde S, Berkefeld J, Seifert V, Raabe A. Size and location of ruptured and unruptured intracranial aneurysms measured by 3‑dimensional rotational angiography. Surg Neurol. 2006;65:18–27.

    Article  PubMed  Google Scholar 

  14. Hirai T, Korogi Y, Suginohara K, Ono K, Nishi T, Uemura S, Yamura M, Yamashita Y. Clinical usefulness of unsubtracted 3D digital angiography compared with rotational digital angiography in the pretreatment evaluation of intracranial aneurysms. AJNR Am J Neuroradiol. 2003;24:1067–74.

    PubMed  PubMed Central  Google Scholar 

  15. Montoya JC, Li Y, Strother C, Chen GH. 3D deep learning Angiography (3D-DLA) from C‑arm Conebeam CT. AJNR Am J Neuroradiol. 2018;39:916–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.

    Google Scholar 

  17. Van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K. Wavenet: a generative model for raw audio. 2016. arXiv: 1609.03499v2[cs.SD].

    Google Scholar 

  18. Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. 2016. arXiv: 1511.07122v3[cs.CV].

    Google Scholar 

  19. Chun CW, Kim BS, Lee CH, Ihn YK, Shin YS. Patient radiation dose in diagnostic and interventional procedures for intracranial aneurysms: experience at a single center. Korean J Radiol. 2014;15:844–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim DJ, Park MK, Jung DE, Kang JH, Kim BM. Radiation dose reduction without compromise to image quality by alterations of filtration and focal spot size in cerebral angiography. Korean J Radiol. 2017;18:722–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Lang.

Ethics declarations

Conflict of interest

S. Lang, P. Hoelter, S. Manuel, F. Eisenhut, C. Kaethner, M. Kowarschik, H. Lücking and A. Doerfler declare that they have no competing interests.

Additional information

Disclaimer

The concepts and results presented in this paper are based on research and are not commercially available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, S., Hoelter, P., Schmidt, M. et al. Evaluation of an Artificial Intelligence-Based 3D-Angiography for Visualization of Cerebral Vasculature. Clin Neuroradiol 30, 705–712 (2020). https://doi.org/10.1007/s00062-019-00836-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00836-7

Keywords

Navigation