Skip to main content

Advertisement

Log in

High-resolution Compressed-sensing T1 Black-blood MRI

A New Multipurpose Sequence in Vascular Neuroimaging?

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Background and Purpose

In vasculopathies of the central nervous system, reliable and timely diagnosis is important against the background of significant morbidity and sequelae in cases of incorrect diagnosis or delayed treatment. Magnetic resonance imaging (MRI) plays a major role in the detection and monitoring of intracranial and extracranial vascular pathologies of different etiologies, in particular for evaluation of the vessel wall in addition to luminal information, thus allowing differentiation between various vasculopathies. Compressed-sensing black-blood MRI combines high image quality with relatively short acquisition time and offers promising potential in the context of neurovascular vessel wall imaging in clinical routine. This case review gives an overview of its application in the diagnosis of various intracranial and extracranial entities.

Methods

An optimized high-resolution compressed-sensing black-blood 3D T1-weighted fast (turbo) spin echo technique (T1 CS-SPACE prototype) precontrast and postcontrast application at 3T was used for the evaluation of various vascular conditions in neuroradiology.

Results

In this article seven cases of intracranial and extracranial arterial and venous vasculopathies with representative imaging findings in high-resolution compressed-sensing black-blood MRI are presented.

Conclusion

High-resolution 3D T1 CS-SPACE black-blood MRI is capable of imaging various vascular entities in high detail with whole head coverage and low susceptibility for motion artifacts and within acceptable scan times. It represents a highly versatile, non-invasive technique for the visualization and differentiation of a wide variety of neurovascular arterial and venous disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mossa-Basha M, Shibata DK, Hallam DK, de Havenon A, Hippe DS, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke. 2017;48:3026–33.

    Article  Google Scholar 

  2. Eiden S, Beck C, Venhoff N, Elsheikh S, Ihorst G, Urbach H, et al. High-resolution contrast-enhanced vessel wall imaging in patients with suspected cerebral vasculitis: prospective comparison of whole-brain 3D T1 SPACE versus 2D T1 black blood MRI at 3 Tesla. PLoS One. 2019;14:e213514.

    Article  CAS  Google Scholar 

  3. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58:1182–95.

    Article  Google Scholar 

  4. Makhijani MK, Balu N, Yamada K, Yuan C, Nayak KS. Accelerated 3D MERGE carotid imaging using compressed sensing with a hidden Markov tree model. J Magn Reson Imaging. 2012;36:1194–202.

    Article  Google Scholar 

  5. Li B, Dong L, Chen B, Ji S, Cai W, Wang Y, et al. Turbo fast three-dimensional carotid artery black-blood MRI by combining three-dimensional MERGE sequence with compressed sensing. Magn Reson Med. 2013;70:1347–52.

    Article  Google Scholar 

  6. Li B, Li H, Li J, Zhang Y, Wang X, Zhang J, et al. Relaxation enhanced compressed sensing three-dimensional black-blood vessel wall MR imaging: preliminary studies. Magn Reson Imaging. 2015;33:932–8.

    Article  Google Scholar 

  7. Yuan J, Usman A, Reid SA, King KF, Patterson AJ, Gillard JH, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA. 2018;31:183–90.

    Article  CAS  Google Scholar 

  8. Zhu C, Tian B, Chen L, Eisenmenger L, Raithel E, Forman C, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA. 2018;31:457–67.

    Article  CAS  Google Scholar 

  9. Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol. 2017;38:218–29.

    Article  CAS  Google Scholar 

  10. Zhu C, Haraldsson H, Tian B, Meisel K, Ko N, Lawton M, et al. High resolution imaging of the intracranial vessel wall at 3 and 7 T using 3D fast spin echo MRI. MAGMA. 2016;29:559–70.

    Article  CAS  Google Scholar 

  11. Fan Z, Yang Q, Deng Z, Li Y, Bi X, Song S, et al. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med. 2017;77:1142–50.

    Article  Google Scholar 

  12. Li G, Hennig J, Raithel E, Büchert M, Paul D, Korvink JG, et al. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging. MAGMA. 2015;28:459–72.

    Article  Google Scholar 

  13. Li G, Zaitsev M, Büchert M, Raithel E, Paul D, Korvink JG, et al. Improving the robustness of 3D turbo spin echo imaging to involuntary motion. MAGMA. 2015;28:329–45.

    Article  Google Scholar 

  14. Fritz J, Raithel E, Thawait GK, Gilson W, Papp DF. Six-fold acceleration of high-spatial resolution 3D SPACE MRI of the knee through incoherent k‑space undersampling and iterative reconstruction-first experience. Invest Radiol. 2016;51:400–9.

    Article  Google Scholar 

  15. Stalder AF, Schmidt M, Quick HH, Schlamann M, Maderwald S, Schmitt P, et al. Highly undersampled contrastenhanced MRA with iterative reconstruction: Integration in a clinical setting. Magn Reson Med. 2015;74:1652–60.

    Article  CAS  Google Scholar 

  16. Dejaco C, Ramiro S, Duftner C, Besson FL, Bley TA, Blockmans D, et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice. Ann Rheum Dis. 2018;77:636–43.

    Article  Google Scholar 

  17. Jiang Y, Zhu C, Peng W, Degnan AJ, Chen L, Wang X, et al. Ex-vivo imaging and plaque type classification of intracranial atherosclerotic plaque using high resolution MRI. Atherosclerosis. 2016;249:10–6.

    Article  CAS  Google Scholar 

  18. Qiao Y, Steinman DA, Qin Q, Etesami M, Schär M, Astor BC, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging. 2011;34:22–30.

    Article  Google Scholar 

  19. Zhu C, Sadat U, Patterson AJ, Teng Z, Gillard JH, Graves MJ. 3D high-resolution contrast enhanced MRI of carotid atheroma—a technical update. Magn Reson Imaging. 2014;32:594–7.

    Article  Google Scholar 

  20. Mossa-Basha M, Hwang WD, De Havenon A, Hippe D, Balu N, Becker KJ, et al. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke. 2015;46:1567–73.

    Article  Google Scholar 

  21. Obusez EC, Hui F, Hajj-Ali RA, Cerejo R, Calabrese LH, Hammad T, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. AJNR Am J Neuroradiol. 2014;35:1527–32.

    Article  CAS  Google Scholar 

  22. Mandell DM, Matouk CC, Farb RI, Krings T, Agid R, terBrugge K, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke. 2012;43:860–2.

    Article  Google Scholar 

  23. Schuster S, Bachmann H, Thom V, Kaufmann-Buehler AK, Matschke J, Siemonsen S, et al. Subtypes of primary angiitis of the CNS identified by MRI patterns reflect the size of affected vessels. J Neurol Neurosurg Psychiatry. 2017;88:749–55.

    Article  Google Scholar 

  24. Skarpathiotakis M, Mandell DM, Swartz RH, Tomlinson G, Mikulis DJ. Intracranial atherosclerotic plaque enhancement in patients with Ischemic stroke. AJNR Am J Neuroradiol. 2013;34:299–304.

    Article  CAS  Google Scholar 

  25. Zeiler SR, Qiao Y, Pardo CA, Lim M, Wasserman BA. Vessel wall MRI for targeting biopsies of Intracranial vasculitis. AJNR Am J Neuroradiol. 2018;39:2034–6.

    Article  CAS  Google Scholar 

  26. Matouk CC, Mandell DM, Günel M, Bulsara KR, Malhotra A, Hebert R, et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery. 2013;72:492–6.

    Article  Google Scholar 

  27. Edjlali M, Gentric JC, Régent-Rodriguez C, Trystram D, Hassen WB, Lion S, et al. Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms? Stroke. 2014;45:3704–6.

    Article  Google Scholar 

  28. Kataoka K, Taneda M, Asai T, Kinoshita A, Ito M, Kuroda R. Structural fragility and inflammatory response of ruptured cerebral aneurysms: a comparative study between ruptured and unruptured cerebral aneurysms. Stroke. 1999;30:1396–401.

    Article  CAS  Google Scholar 

  29. Edjlali M, Guédon A, Ben Hassen W, Boulouis G, Benzakoun J, Rodriguez-Régent C, et al. Circumferential thick enhancement at vessel wall MRI has high specificity for Intracranial aneurysm instability. Radiology. 2018;289:181–7.

    Article  Google Scholar 

  30. Klink T, Geiger J, Both M, Ness T, Heinzelmann S, Reinhard M, et al. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial. Radiology. 2014;273:844–52.

    Article  Google Scholar 

  31. Hunter MA, Santosh C, Teasdale E, Forbes KP. High-resolution double inversion recovery black-blood imaging of cervical artery dissection using 3T MR imaging. AJNR Am J Neuroradiol. 2012;33:E133–7.

    Article  CAS  Google Scholar 

  32. Yang Q, Duan J, Fan Z, Qu X, Xie Y, Nguyen C, et al. Early detection and quantification of cerebral venous thrombosis by magnetic resonance black-blood thrombus imaging. Stroke. 2016;47:404–9.

    Article  Google Scholar 

  33. Wang D, Lu Y, Yin B, Chen M, Geng D, Liu L, et al. 3D fast spin-echo T1 black-blood imaging for the preoperative detection of venous sinus invasion by meningioma: comparison with contrast-enhanced MRV. Clin Neuroradiol. 2019;29:65–73.

    Article  CAS  Google Scholar 

  34. Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52:489–509.

    Article  Google Scholar 

  35. Sommer NN, Saam T, Coppenrath E, Kooijman H, Kümpfel T, Patzig M, et al. Multiple sclerosis: improved detection of active cerebral lesions with 3‑dimensional T1 black-blood magnetic resonance imaging compared with conventional 3‑dimensional T1 GRE imaging. Invest Radiol. 2018;53:13–9.

    Article  Google Scholar 

  36. Wang G, Yang X, Duan J, Zhang N, Maya MM, Xie Y, et al. Cerebral venous thrombosis: MR black-blood thrombus imaging with enhanced blood signal suppression. AJNR Am J Neuroradiol. 2019;40:1725–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cho SJ, Jung SC, Suh CH, Lee JB, Kim D. High-resolution magnetic resonance imaging of intracranial vessel walls: comparison of 3D T1-weighted turbo spin echo with or without DANTE or iMSDE. PLoS One. 2019;14:e220603.

    Article  CAS  Google Scholar 

  38. Sartoretti T, Sartoretti E, Wyss M, Schwenk Á, van Smoorenburg L, Eichenberger B, et al. Compressed SENSE accelerated 3D T1w black blood turbo spin echo versus 2D T1w turbo spin echo sequence in pituitary magnetic resonance imaging. Eur J Radiol. 2019;120:108667.

    Article  Google Scholar 

  39. Klupp E, Cervantes B, Sollmann N, Treibel F, Weidlich D, Baum T, et al. Improved brachial plexus visualization using an adiabatic iMSDE-prepared STIR 3D TSE. Clin Neuroradiol. 2019;29:631–8.

    Article  Google Scholar 

Download references

Acknowledgements

Grant support by the Deutsche Forschungsgemeinschaft (DFG) under grant numbers DFG HE 1875/26‑2, and BL1132/1‑2 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstanze Guggenberger.

Ethics declarations

Conflict of interest

K. Guggenberger, A.J. Krafft, U. Ludwig, P. Vogel, S. Elsheik, E. Raithel, C. Forman, P. Dovi-Akué, H. Urbach, T. Bley and S. Meckel declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. All patients gave their informed consent for the use of their data prior to inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guggenberger, K., Krafft, A.J., Ludwig, U. et al. High-resolution Compressed-sensing T1 Black-blood MRI. Clin Neuroradiol 31, 207–216 (2021). https://doi.org/10.1007/s00062-019-00867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00867-0

Keywords

Navigation