Skip to main content
Log in

Two different streams form the dorsal visual system: anatomy and functions

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Bell BD (1994) Pantomime recognition impairment in aphasia: an analysis of error types. Brain Lang 47:269–278

    Article  CAS  PubMed  Google Scholar 

  • Berti A, Rizzolatti G (1992) Visual processing without awareness: Evidence from unilateral neglect. J Cognit Neurosci 4:345–351

    Google Scholar 

  • Binkofski F, Dohle C, Posse S, Stephan KM, Hefter H, Seitz RJ, Freund HJ (1998) Human anterior intraparietal area subserves prehension. A combined lesion and functional MRI activation study. Neurology 50:1253–1259

    CAS  PubMed  Google Scholar 

  • Binkofski F, Buccino G, Posse S, Seitz RJ, Rizzolatti G, Freund HJ (1999) A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286

    Article  CAS  PubMed  Google Scholar 

  • Bisiach E, Vallar G (2000) Unilateral neglect in humans. In: Boller F, Grafman J, Rizzolatti G (eds) Handbook of neuropsychology, vol. I, 2nd edn. Elsevier Science, Amsterdam, pp 459–450

  • Brain WR (1961) Speech disorders: aphasia, apraxia and agnosia. Butterworth, Washington

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien Dargerstellt auf Grund des Zellenbaues. Barth, Leipzig

  • Bruce CJ, Desimone R, Gross CG (1981) Visual properties of neurons in a polisensory area in superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    CAS  PubMed  Google Scholar 

  • Buccino G, Lui F, Patteri I, Benuzzi F, Canessa N, Lagravinese G, Porro CA, Rizzolatti G (2002) Observation of actions performed by non-conspecifics activates the mirror system in humans. Soc Neurosci 163.1

  • Caminiti R, Ferraina S, Johnson PB (1996) The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb Cortex 6:319–328

    CAS  PubMed  Google Scholar 

  • Chao LL, Martin A (2000) Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12:478–484

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel JR (1991) Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkeys. Neuropsychologia 29:517–537

    CAS  PubMed  Google Scholar 

  • Colby CL, Gattass R, Olson CR, Gross CG (1988) Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. J Comp Neurol 269:392–413

    CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) Ventral intraparietal area of the macaque: anatomical location and visual response properties. J Neurophysiol 69:902–914

    CAS  PubMed  Google Scholar 

  • Cooke DF, Taylor CSR, Moore T, Graziano MSE (2002) Electrical microstimulation in monkey area VIP evokes defensive movements. Soc Neurosci Abstr 560.1

  • Cowey A, Small M, Ellis S (1994) Left visuo-spatial neglect can be worse in far than near space. Neuropsychologia 32:1059–1066

    CAS  PubMed  Google Scholar 

  • D'Esposito M, McGlinchey-Berroth R, Alexander MP, Verfaellie M, Milberg WP (1993) Dissociable cognitive and neural mechanisms of unilateral visual neglect. Neurology 43:2638–2644

    CAS  PubMed  Google Scholar 

  • De Renzi E (1982) Disorders of space exploration and cognition. John Wiley, Chichester, UK

  • De Renzi E, Faglioni P (1999) Apraxia. In: Denes G, Pizzamiglio (eds) Clinical and experimental neuropsychology. Psychology Press, East Sussex, UK

  • Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque monkey. Brain Res 178:363–380

    CAS  PubMed  Google Scholar 

  • Duffy JR, Watkins LB (1984) The effect of response choice relatedness on pantomime and verbal recognition ability in aphasic patients. Brain Lang 21:291–306

    CAS  PubMed  Google Scholar 

  • Duhamel JR, Bremmer F, Ben Hamed S, Graf W (1997) Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389:845–848

    CAS  PubMed  Google Scholar 

  • Ehrsson HH, Fagergren A, Jonsson T, Westling G, Johansson RS, Forssberg H (2000) Cortical activity in precision- versus power-grip tasks: an fMRI study. J Neurophysiol 83:528–536

    CAS  PubMed  Google Scholar 

  • Fogassi L, Gallese V, Fadiga L, Luppino G, Matelli M, Rizzolatti G (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141–157

    CAS  PubMed  Google Scholar 

  • Fogassi L, Gallese V, Fadiga L, Rizzolatti G (1998) Neurons responding to the sight of goal-directed hand/arm actions in the parietal area PF (7b) of the macaque monkey. Soc Neurosci Abstr 24:257–255

    Google Scholar 

  • Fogassi L, Gallese V, Buccino G, Craighero L, Fadiga L, Rizzolatti G (2001) Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain 124:571–586

    CAS  PubMed  Google Scholar 

  • Gainotti G, Lemmo MS (1976) Comprehension of symbolic gestures in aphasia. Brain Lang 3:451–460

    CAS  PubMed  Google Scholar 

  • Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5:1525–1529

    CAS  PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (2002) Action representation and the inferior parietal lobule. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance, vol. XIX. Oxford University Press, UK, pp 334–355

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8:30–52

    CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Kutz DF, Battaglini PP (1999) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11:575–582

    CAS  PubMed  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6A: an occipito-parietal network processing visual information. Eur J Neurosci 13:1572–1588

    Article  CAS  PubMed  Google Scholar 

  • Gamberini M, Galletti C, Luppino G, Matelli M (2002) Cytoarchitectonic organization of the functionally defined areas V6 and V6A in the parieto-occipital cortex of macaque brain. J Physiol (Lond) 543P, 113P

  • Gentilucci M, Scandolara C, Pigarev IN, Rizzolatti G (1983) Visual responses in the postarcuate cortex (area 6) of the monkey that are independent of eye position. Exp Brain Res 50:464–468

    CAS  PubMed  Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey: I. Somatotopy and the control of proximal movements. Exp Brain Res 7:475–490

    Google Scholar 

  • Gerardin E, Sirigu A, Lehericy S, Poline J-B, Gaymard B, Marsault C, Agid Y, Le Bihan D (2000) Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 10:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Geschwind N (1965) Disconnexion syndromes in animals and man. Brain 88:237–294

    CAS  PubMed  Google Scholar 

  • Godschalk M, Lemon RN, Nijs HGT, Kuypers HGJM (1981) Behavior of neurons in monkey peri-arcuate and precentral cortex before and during visually guided arm and hand movements. Exp Brain Res 44:113–116

    CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

    CAS  PubMed  Google Scholar 

  • Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057

    CAS  PubMed  Google Scholar 

  • Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851

    CAS  PubMed  Google Scholar 

  • Halligan PW, Marshall JC (1991) Left neglect for near but not far space in man. Nature 350:498–500

    Google Scholar 

  • Heilman KM, Rothi LJ, Valenstein E (1982) Two forms of ideomotor apraxia. Neurology 32:342–346

    CAS  PubMed  Google Scholar 

  • Helmoltz H (1896) Die Tatsache der Wahrnehmung. In: Vorträge und Reden, vol. II. Braunschweig

  • Hyvärinen J (1981) Regional distribution of functions in parietal association area 7 of the monkey. Brain Res 206:287–303

    Article  PubMed  Google Scholar 

  • Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286:2526–2528

    CAS  PubMed  Google Scholar 

  • Jeannerod M (1986) The formation of finger grip during prehension. A cortically mediated visuomotor pattern. Behav Brain Sci 19:99–116

    Article  CAS  Google Scholar 

  • Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17:187–245

    Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18:314–320

    CAS  PubMed  Google Scholar 

  • Johnson PB, Ferraina S, Caminiti R (1993) Cortical networks for visual reaching. Exp Brain Res 97:361–365

    CAS  PubMed  Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb Cortex 6:102–119

    CAS  PubMed  Google Scholar 

  • Karnath HO, Ferber S, Himmelbach M (2001) Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411:950–953

    Google Scholar 

  • Lacquaniti F, Guigon E, Bianchi L, Ferraina S, Caminiti R (1995) Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex 5:391–409

    CAS  PubMed  Google Scholar 

  • Leinonen L, Hyvärinen J, Nyman G, Linnankoski I (1979) I. Function properties of neurons in lateral part of associative area 7 in awake monkeys. Exp Brain Res 34:299–320

    CAS  PubMed  Google Scholar 

  • Marshall JF, Halligan PW (1988) Blindsight and insight in visuo-spatial neglect. Nature 336:766–767

    Article  CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of macaque monkey. Behav Brain Res 18:125–137

    CAS  PubMed  Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and of the adjacent cingulate cortex. J Comp Neurol 311:445–462

    CAS  PubMed  Google Scholar 

  • Matelli M, Govoni P, Galletti C, Kutz DF, Luppino G (1998) Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp Neurol 402:327–352

    CAS  PubMed  Google Scholar 

  • Milner D, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

  • Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908

    CAS  PubMed  Google Scholar 

  • Murata A, Fadiga L, Fogassi L, Gallese V, Raos V, Rizzolatti G (1997) Object representation in the ventral premotor cortex (area F5) of the monkey. J Neurophysiol 78:2226–2230

    Google Scholar 

  • Murata A, Gallese V, Luppino G, Kaseda M, Sakata H (2000) Selectivity for the shape, size and orientation of objects in the hand-manipulation-related neurons in the anterior intraparietal (AIP) area of the macaque. J Neurophysiol 83:2580–2601

    CAS  PubMed  Google Scholar 

  • Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci U S A 97:913–918

    CAS  PubMed  Google Scholar 

  • Pandya DN, Seltzer B (1982) Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey. J Comp Neurol 204:196–210

    CAS  PubMed  Google Scholar 

  • Pause M, Kunesch E, Binkofski F, Freund HJ (1989) Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain 112:1599–1625

    PubMed  Google Scholar 

  • Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111:643–674

    PubMed  Google Scholar 

  • Perrett DI, Harries MH, Bevan R, Thomas S, Benson PJ, Mistlin AJ, Chitty AK, Hietanen JK, Ortega JE (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146:87–113

    CAS  PubMed  Google Scholar 

  • Petrides M, Pandya DN (1997) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds) Handbook of neuropsychology, vol. IX. Elsevier, New York, pp 17–58

  • Ratcliff G, Davies Jones GAB (1972) Defective visual localization in focal brain wounds. Brain 95:49–60

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Matelli M, Pavesi G (1983) Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain 106:655–673

    PubMed  Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Exp Brain Res 71:491–507

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cognit Brain Res 3:131–141

    Article  CAS  Google Scholar 

  • Rizzolatti G, Berti A, Gallese V (2000) Spatial neglect: neurophysiological bases, cortical circuits and theories. In: Boller F, Grafman J, Rizzolatti G (eds) Handbook of neuropsychology, vol. I. 2nd edn. Elsevier Science, Amsterdam, pp 503–537

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Rev Neurosci 2:661–670

    Article  CAS  Google Scholar 

  • Rothi LJ, Heilman KM, Watson RT (1985) Pantomime comprehension and ideomotor apraxia. J Neurol Neurosurg Psychiatry 48:451–454

    Google Scholar 

  • Sakata H, Taira M (1994) Parietal control of hand action. Curr Opin Neurobiol 4:847–856

    CAS  PubMed  Google Scholar 

  • Sakata H, Takaoka Y, Kawarasaki A, Shibutani H (1973) Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res 64:85–102

    CAS  PubMed  Google Scholar 

  • Schieber M (2000) Inactivation of the ventral premotor cortex biases the laterality of motoric choices. Exp Brain Res 130:497–507

    Article  CAS  PubMed  Google Scholar 

  • Shipp S, Blanton M, Zeki S (1998) A visuo-somatomotor pathway through superior parietal cortex in the macaque monkey: cortical connections of areas V6 and V6A. Eur J Neurosci 10:3171–3193

    Article  CAS  PubMed  Google Scholar 

  • Sperry RW (1952) Neurology and the mind-brain problem. Am Sci 40:291–312

    Google Scholar 

  • Taira M, Mine S, Georgopoulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83:29–36

    CAS  PubMed  Google Scholar 

  • Tanné J, Boussaoud D, Boyerzeller N, Rouiller EM (1995) Direct visual pathways for reaching movement in the macaque monkeys. Neuroreport 7:267–272

    PubMed  Google Scholar 

  • Tanné-Gariepy J, Rouiller EM, Boussaoud D (2002) Parietal inputs to dorsal versus ventral premotor areas in the monkey: evidence for largely segregated visuomotor pathways. Exp Brain Res 145:91–103

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586

  • Vallar G, Perani D (1987) The anatomy of spatial neglect in humans. In: Jeannerod M (ed) Neurophysiological and neuropsychological aspects of spatial neglect. North-Holland Elsevier Science, Amsterdam, pp 235–258

  • Von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana Il, pp 136

  • Von Economo C (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London, pp 186

Download references

Acknowledgements

We are grateful to Giuseppe Luppino for his help and critical discussion of the manuscript. This study was supported by CNR (Consiglio Nazionale delle Ricerche) and by MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Rizzolatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzolatti, G., Matelli, M. Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153, 146–157 (2003). https://doi.org/10.1007/s00221-003-1588-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1588-0

Keywords

Navigation