Skip to main content

Advertisement

Log in

The nonspecific nature of proton spectroscopy in brain masses in children: a series of demyelinating lesions

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

MRI imaging has significantly improved the detection of brain lesions over the past few decades. It has high sensitivity to intracranial pathology but confident preoperative tissue diagnosis is relatively unusual. MR spectroscopy provides in-vivo biochemical information and has been used to improve the low specificity of tumour diagnosis. During the last decade there have been a number of reports making the case that proton spectroscopy can distinguish different grades of glial tumours and in some situations provide information on histological type. We report four children who presented with neurological symptoms and focal masses on MRI. MRS in each of them gave results consistent with textbook descriptions of malignancy, but in all four cases the abnormalities were subsequently shown to be due to demyelination. We reiterate that spectroscopic appearances are nonspecific and spectroscopic data should be evaluated in the light of concurrent imaging features and the clinical presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Speck O, Thiel T, Hennig J (1996) Grading and therapy monitoring of astrocytomas with 1H-spectroscopy: preliminary study. Anticancer Res 16: 1581–1585

    Google Scholar 

  2. Meyerand ME, Pipas JM, Mamourian A, Tosteson TD, Dunn JF (1999) Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR 20: 117–123

    Google Scholar 

  3. Gill SS, Thomas DG, Van Bruggen N, et al (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 14: 497–504

    Google Scholar 

  4. Griffiths PD (1999) A protocol for imaging paediatric brain tumours. United Kingdom Children’s Cancer Study Group (UKCCSG) and Société Française D’Oncologie Pédiatrique (SFOP) Panelists. Clin Oncol 11: 290–294

    Google Scholar 

  5. Wilkinson ID, Griffiths PD, Wales JKH (2001) Proton MR spectroscopy of neurofibromatosis bright objects and gliomas in children with neurofibromatosis type 1. Magn Reson Imaging 19: 1081–1089

    Article  Google Scholar 

  6. Falini A, Calabrese G, Origgi, et al (1996) Proton MR spectroscopy of intracranial tumours: clinical perspectives. J Neurol 243: 706–714

    Article  Google Scholar 

  7. Bruhn H, Frahm J, Gyngell ML, et al (1989) Non-invasive differentiation of tumors with use of localised HMR Spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172: 541–548

    CAS  PubMed  Google Scholar 

  8. Birken DL, Oldendorf WH (1989) N-acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci Biobehav Rev 13: 23–31

    Google Scholar 

  9. Davie CA, Wenning GK, Barker GJ, et al (1995) Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy. Ann Neurol 37: 204–210

    Article  Google Scholar 

  10. Gideon P, Henriksen O, Sperling B, et al (1992) Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke 23: 1566–1572

    Google Scholar 

  11. Van der Knaap MS, van der Grond J, Luyten PR, den Hollander JA, Nauta JJ, Valk J (1992) 1H and 31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol 31: 202–311

    Article  Google Scholar 

  12. Broniscer A, Gajjar A, Bhargava R, et al (1997) Brain stem involvement in children with neurofibromatosis type 1: role of magnetic resonance imaging and spectroscopy in the distinction from diffuse pontine glioma. Neurosurgery 40: 331–337

    Article  Google Scholar 

  13. Mukonoweshuro W, Wilkinson ID, Griffiths PD (2001) Proton MR spectroscopy of cortical tubers in adults with tuberous sclerosis complex. AJNR 22: 1920–1925

    Google Scholar 

  14. Wilkinson ID, Lunn S, Miszkiel KA, et al (1997) Proton MRS and quantitative MRI assessment of the short term neurological response to antiretroviral therapy in AIDS. J Neurol Neurosurg Psychiatry 63: 477–482

    Google Scholar 

  15. Burtscher IM, Holtas S (2001) Proton magnetic resonance spectroscopy in brain tumours: clinical applications. Neuroradiology 43: 345–352

    Google Scholar 

  16. Matthews PM, Francis G, Antel J, Arnold DL (1991) Proton magnetic resonance spectroscopy for metabolic characterization of plaques in multiple sclerosis. Neurology 41: 1251–1256

    Google Scholar 

  17. Hwang JH, Egnaczyk GF, Ballard E, Dunn RS, Holland SK, Ball WS Jr (1998) Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR 19: 535–540

    Google Scholar 

  18. Kaminogo M, Ishimaru H, Morikawa M, et al (2001) Diagnostic potential of short echo time MR spectroscopy of gliomas with single-voxel and point-resolved spatially localised proton spectroscopy of brain. Neuroradiology 43: 353–363

    Article  CAS  PubMed  Google Scholar 

  19. Kuesel AC, Sutherland GR, Halliday W, Smith ICP (1994)1H MTD of high-grade astrocytomas : mobile lipid accumulation in necrotic tumour. NMR Biomed 7: 149–155

    CAS  PubMed  Google Scholar 

  20. Simone IL, Tortorella C, Federico F (1999) The contribution of (1)H-magnetic resonance spectroscopy in defining the pathophysiology of multiple sclerosis. Ital J Neurol Sci 20: 241–245

    Article  Google Scholar 

  21. Fenton WS, Hibbeln J, Knable M (2000) Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47: 8–21

    Article  Google Scholar 

  22. Rudkin TM, Arnold DL (1999) Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 56: 919–926

    Google Scholar 

  23. Frahm J, Bruhn H, Hanicke W, Merboldt KD, Mursch K, Markakis E (1991) Localized proton NMR spectroscopy of brain tumors using short-echo time STEAM sequences. J Comput Assist Tomogr 15: 915–922

    Google Scholar 

  24. Tein RD, Lai PH, Smith JS, Lazeyras F (1996) Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumours. Am J Roentgenol 167: 201–209

    CAS  Google Scholar 

  25. Go KG, Kamman RL, Mooyaart EL, et al (1995) Localised proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography. Neuroradiology 37: 198–206

    Article  Google Scholar 

  26. Negendank WG, Sauter R, Brown TR, et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84: 449–458

    Google Scholar 

  27. Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186: 745–752

    CAS  PubMed  Google Scholar 

  28. Saindane AM, Cha S, Law M, Xue X, Knopp EA, Zagzag D (2002) Proton MR spectroscopy of tumefactive demyelinating lesions. AJNR 23: 1378–1386

    Google Scholar 

  29. Salvan AM, Confort-Gouny S, Cozzone PJ, Vion-Dury J, Chabrol B, Mancini J (1999) In vivo cerebral proton MRS in a case of subacute sclerosing panencephalitis. J Neurol Neurosurg Psychiatry 66: 547–548

    Google Scholar 

  30. Venkatesh SK, Gupta RK, Pal L, Husain N, Husain M (2001) Spectroscopic increase in choline signal is a non-specific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 14: 8–15

    Article  Google Scholar 

  31. Rovira A, Pericot I, Alonso J, Rio J, Grive E, Montalban X (2002) Serial diffusion-weighted MR imaging and proton MR spectroscopy of acute large demyelinating brain lesions : case report. AJNR 23: 989–994

    Google Scholar 

  32. Arnold DL, Matthews PM, Francis GS, O’Connor J, Antel JP (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31: 235–241

    Article  Google Scholar 

  33. Davie CA, Hawkins CP, Barker GJ, et al (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 117: 49–58

    PubMed  Google Scholar 

  34. Silver NC, Barker RA, MacManus DG, et al (1997) Proton magnetic resonance spectroscopy in a pathologically confirmed acute demyelinating lesion. J Neurol 244: 204–207

    Article  Google Scholar 

  35. Bitsch A, Bruhn H, Vougioukas V, et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. J Neuroradiol 20: 1619–1627

    Google Scholar 

Download references

Acknowledgements

We thank the MR radiographers of the University of Sheffield for their contribution in imaging the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandya, H.G., Wilkinson, I.D., Agarwal, S.K. et al. The nonspecific nature of proton spectroscopy in brain masses in children: a series of demyelinating lesions. Neuroradiology 47, 955–959 (2005). https://doi.org/10.1007/s00234-003-0947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-0947-7

Keywords

Navigation