Skip to main content
Log in

Assessment of brain perfusion with MRI: methodology and application to acute stroke

Neuroradiology Aims and scope Submit manuscript

A Lucien Appel Prize to this article was published on 20 January 2004

Abstract

We review the methodology of brain perfusion measurements with MRI and their application to acute stroke, with particular emphasis on the work awarded by the 6th Lucien Appel Prize for Neuroradiology. The application of the indicator dilution theory to the dynamic susceptibility-weighted bolus-tracking method is explained, as is the approach to obtaining quantitative measurements of cerebral blood flow (CBF) and volume (CBV). Our contribution to methodological developments, such as CBV measurement with the frequency-shifted burst sequence, development of the PRESTO sequence, comparison of different deconvolution methods and of spin- and gradient-echo sequences, and the validation of MRI measurements against positron emission tomography is summarised. The pathophysiology of brain ischaemia and the role of neuroimaging in the setting of acute stroke are reviewed, with an introduction to the concepts of ischaemic penumbra and diffusion/perfusion mismatch. Our work on the determination of absolute CBF and CBV thresholds for predicting the area of infarct growth, identification of the best perfusion parameters (relative or absolute) for predicting the area of infarct growth and the role of MR angiography is also summarised. We conclude that MRI is a very powerful way to assess brain perfusion and that its use might help in selecting patients who will benefit most from treatment such as thrombolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

References

  1. Detre JA, Aslop DC (2000) Perfusion fMRI with arterial spin labeling. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Berlin, pp 47–61

  2. Li TQ, Chen ZG, Østergaard L, Hindmarsh T, Moseley ME (1999) Quantification of cerebral blood flow by bolus tracking and artery spin tagging methods. Magn Reson Imaging 18: 503–512

    Article  Google Scholar 

  3. Zierler KL (1962) Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 10: 393–407

    Google Scholar 

  4. Sanders JA, Orrison WW Jr (1995) Functional magnetic resonance imaging. Bolus injection principles. In: Orrisson WW Jr, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Mosby, pp 264–280

  5. Weisskoff RM, Chesler D, Boxerman JL, Rosen BR (1993) Pitfalls in MR measurements of tissue blood flow with intravascular tracers: Which mean transit time? Magn Reson Med 29: 553–559

    CAS  PubMed  Google Scholar 

  6. Calamante F, Gadian DG, Connelly A (2000) Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition. Magn Reson Med 44: 466–473

    Article  CAS  PubMed  Google Scholar 

  7. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36: 726–736

    CAS  PubMed  Google Scholar 

  8. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF, CBV and MTT measurements using MRI bolus tracking: Implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 12: 400–410

    CAS  PubMed  Google Scholar 

  9. Østergaard L, Johannsen P, Høst-Poulsen P, et al (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [15O]H2O positron emission tomography in humans. J Cereb Blood Flow Metab 18: 935–940

    Google Scholar 

  10. Chabriat H, Pappata S, Østergaard L, et al (2000) Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke 31: 1904–1912

    CAS  PubMed  Google Scholar 

  11. Sorensen AG, Tievsky AL, Østergaard L, Weisskoff RM, Rosen BR (1997) Contrast agents in functional MR imaging. J Magn Reson Imaging 7: 47–55

    CAS  PubMed  Google Scholar 

  12. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34: 555–466

    CAS  PubMed  Google Scholar 

  13. Rempp KA, Brix B, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193: 637–641

    CAS  PubMed  Google Scholar 

  14. Petrella JR, DeCarli C, Dagli M, et al (1997) Assessment of whole brain vasodilatory capacity with acetazolamide challenge at 1.5 T using dynamic contrast imaging with FS-burst. AJNR 18: 1153–1161

    CAS  Google Scholar 

  15. Petrella JR, DeCarli C, Dagli M, et al (1998) Age-related vasodilatatory response to acetazolamide challenge in healthy adult humans: a dynamic contrast-enhanced MR perfusion imaging study. AJNR 19: 39–44

    CAS  Google Scholar 

  16. Duyn JH, Van Gelderen P, Barker P, Frank JA, Mattay VS, Moonen CT (1994) 3D bolus tracking with frequency-shifted burst MRI. J Comput Assist Tomogr 18: 680–687

    CAS  PubMed  Google Scholar 

  17. Van Gelderen P, Grandin C, Petrella JR, Moonen CT (2000) Rapid three-dimensional MR imaging method for tracking a bolus of contrast agent through the brain. Radiology 216: 603–608

    PubMed  Google Scholar 

  18. Liu G, Sobering G, Duyn J, Moonen CTW (1993) A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO). Magn Reson Med 30: 764–768

    CAS  Google Scholar 

  19. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurements of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36: 715–725

    CAS  PubMed  Google Scholar 

  20. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 43: 559–564

    Article  CAS  Google Scholar 

  21. Grandin CB, Smith AM, Mataigne F, Duprez TP, Cosnard G (1999) Quantification of brain perfusion with bolus tracking MRI: comparison of GRE-EPI and SE-EPI. MAGMA 8 [Suppl 1]: 32

  22. Simonsen CZ, Østergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imag 12: 411–416

    Article  CAS  Google Scholar 

  23. Hagen T, Bartylla K, Piepgras U (1999) Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. J Comp Assist Tomogr 23: 257–264

    Article  CAS  Google Scholar 

  24. Astrup J, Siesjö BK, Symon L (1981) Threshold in cerebral ischemia—the ischemic penumbra. Stroke 12: 723–725

    CAS  PubMed  Google Scholar 

  25. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36: 557–465

    CAS  PubMed  Google Scholar 

  26. Hacke W, Kaste M, Fieschi C, et al (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS) JAMA 274: 1017–1025

    Google Scholar 

  27. Albers GW (1999) Expanding the window for thrombolytic therapy in acute stroke. The potential role of acute MRI for patients selection. Stroke 30: 2230–2237

    CAS  Google Scholar 

  28. Hossmann KA, Mies G, Paschen W, et al (1985) Multiparametric imaging of blood flow and metabolism after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 5: 97–107

    CAS  PubMed  Google Scholar 

  29. Sorensen AG, Copen WA, Østergaard L, et al (1999) Hyperacute stroke: simultaneous measurement of relative cerebral blood volume, relative cerebral blood flow, and mean tissue transit time. Radiology 210: 519–527

    PubMed  Google Scholar 

  30. Grandin CB, Duprez TP, Smith AM, et al (2001) Usefulness of magnetic resonance-derived quantitative cerebral blood flow and volume measurements for predicting infarct growth in hyperacute stroke. Stroke 32: 1147–1153

    CAS  Google Scholar 

  31. Baird AE, Warach S (1998) Magnetic resonance imaging of acute stroke. J Cereb Blood Flow Metab 18: 583–609

    Google Scholar 

  32. Le Bihan D (1991) Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7: 1–30

    PubMed  Google Scholar 

  33. Kohno K, Hoehn-Berlage M, Mies G, Back T, Hossmann KA (1995) Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn Reson Imaging 13: 73–80

    CAS  PubMed  Google Scholar 

  34. Hoehn-Berlage M, Norris DG, Kohno K, Mies G, Leibfritz D, Hossmann KA (1995) Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J Cereb Blood Flow Metab 15: 1002–1011

    CAS  PubMed  Google Scholar 

  35. Cosnard G, Duprez T, Grandin C, Dechambre S, Mataigne F, Smith A (2000) Diffusion- and perfusion-weighted MR imaging during the hyperacute phase of stroke. J Radiol 81: 858–869

    CAS  PubMed  Google Scholar 

  36. Lövblad KO, Laubach HJ, Baird AE, et al (1998) Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR 19: 1061–1066

    CAS  PubMed  Google Scholar 

  37. Mullins ME, Schaefer PW, Sorensen AG, et al (2002) CT and conventional and diffusion-weighted MR imaging in acute stroke: Study in 691 patients at presentation to the emergency department. Radiology 224: 353–360

    PubMed  Google Scholar 

  38. Kidwell CS, Saver JL, Mattiello J, et al (2000) Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 47: 462–469

    CAS  PubMed  Google Scholar 

  39. Grandin CB, Hermoye L, Duprez TP, et al (2002) Is there an ADC threshold predicting irreversible infarction in hyperacute stroke? J Neuroradiol 29 [Suppl 1]: 1S70–1S71

  40. Barber PA, Darby DG, Desmond PM, et al (1998) Prediction of stroke outcome with echoplanar perfusion- and diffusion-weighted MRI. Neurology 51: 418–426

    CAS  PubMed  Google Scholar 

  41. Baird AE, Benfield A, Schlaug G, et al (1997) Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 41: 581–589

    Google Scholar 

  42. Neumann-Haefelin T, Wittsack HJ, Wenserski F, et al (1999) Diffusion- and perfusion-weighted MRI. The DWI/PWI mismatch region in acute stroke. Stroke 30: 1591–1597

    CAS  PubMed  Google Scholar 

  43. Grandin CB, Duprez TP, Smith AM, et al (2002) Which MR-derived perfusion parameters predict infarct growth the best in hyperacute stroke? A comparative study between relative and quantitative measurements. Radiology 223: 361–370

    PubMed  Google Scholar 

  44. Schlaug G, Benfield A, Baird AE, et al (1999) The ischemic penumbra operationally defined by diffusion and perfusion MRI. Neurology 53: 1528–1537

    CAS  PubMed  Google Scholar 

  45. Granier I, Grandin CB, Duprez T, Smith AM, Peeters A, Cosnard G (2000) Predictive value of MR 3D-TOF angiography and T2 fast-FLAIR sequence to detect hemodynamic disturbance at the hyperacute phase of stroke. J Neuroradiol 27: 119–127

    CAS  PubMed  Google Scholar 

  46. Barber PA, Davis SM, Darby DG, et al (1999) Absent middle cerebral artery flow predicts the presence and evolution of the ischemic penumbra. Neurology 52: 1125–1132

    CAS  Google Scholar 

Download references

Acknowledgements

I warmly thank all the people with whom I have worked and who have made this review possible, especially C.T.W. Moonen, P. Van Gelderen, J.R. Petrella, A.M. Smith, T. Duprez, A. Peeters and G. Cosnard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Grandin.

Additional information

An addendum to this article can be found at http://dx.doi.org/10.1007/s00234-004-1162-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandin, C.B. Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology 45, 755–766 (2003). https://doi.org/10.1007/s00234-003-1024-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-1024-y

Keywords

Navigation