Skip to main content
Log in

MR perfusion imaging in proliferative angiopathy

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Seizures, which may be the main expression of cerebral arteriovenous malformations (CAVM) can be difficult to control medically. Our goal was to use perfusion-weighted imaging (PWI) in correlation with clinical data to detect abnormal areas of the cerebrum related to a particular type of CAVM (proliferative angiopathy) and to study the pathophysiology. We use PWI, with a bolus injection of contrast medium, to investigate seven patients with proliferative angiopathy and fits producing language disturbance. Perfusion parameters were calculated using the first-pass moment theory. Five patients had perimalformative and/or contralateral abnormal areas with relative hyperperfusion (cerebral blood volume +20.7±16.2%, blood flow 92.5±68.8 ml/min/100 g). Areas of hypoperfusion and venous congestion were detected in two patients. One patient who underwent MRI after a severe focal deficit had no significant haemodynamic abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References:

  1. Lasjaunias P, Berenstein A, TerBrugge KG (2002) Surgical neuroangiography Vol 1, 2nd edn. Springer Verlag, Heidelberg Berlin, pp 14–22

  2. Gao E, Young WL, Ornstein E, Pile-Spellman J, Ma Q (1997) A theoretical model of cerebral hemodynamics: application to the study of arteriovenous malformations. J Cereb Blood Flow Metab 17: 905–918

    CAS  PubMed  Google Scholar 

  3. Kader A, Young WL (1996) The effects of intracranial arteriovenous malformations on cerebral hemodynamics. Neurosurg Clin North Am 7: 767–781

    CAS  Google Scholar 

  4. Hacein-Bey L, Nour R, Pile-Spellman J, Van Heertum R, Esser PD, Young WL (1995) Adaptive changes of autoregulation in chronic cerebral hypotension with arteriovenous malformations: an acetazolamide-enhanced single-photon emission CT study. AJNR 16: 1865–1874

    CAS  Google Scholar 

  5. Baumann SB, Noll DC, Kondziolka DS, et al (1995) Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation. J Image Guid Surg 1: 191–197

    CAS  PubMed  Google Scholar 

  6. Nyberg G, Andersson J, Antoni G, et al (1996) Activation PET scanning in pretreatment evaluation of patients with cerebral tumours or vascular lesions in or close to the sensorimotor cortex. Acta Neurochir (Wien) 138: 684–694

    Google Scholar 

  7. Leblanc E, Meyer E, Zatorre R, Tampieri D, Evans A (1995) Functional PET scanning in the preoperative assessment of cerebral arteriovenous malformations. Stereotact Funct Neurosurg 65: 60–64

    CAS  PubMed  Google Scholar 

  8. Fink GR (1992) Effects of cerebral angiomas on perifocal and remote tissue: a multivariate positron emission tomography study. Stroke 23: 1099–1105

    CAS  PubMed  Google Scholar 

  9. Takeshita G, Toyama H, Nakane K, et al (1994) Evaluation of regional cerebral blood flow changes on perifocal brain tissue SPECT before and after removal of arteriovenous malformations. Nucl Med Commun 15: 461–468

    CAS  PubMed  Google Scholar 

  10. Fukuda Y, Murata Y, Umehara I, et al (1999) Perfusion and blood pool scintigraphy for diagnosing soft-tissue arteriovenous malformations. Clin Nucl Med 24: 232–234

    Article  CAS  PubMed  Google Scholar 

  11. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R (1999) Measuring cerebral blood flow using magnetic resonance technics. J Cereb Blood Flow Metab 19: 701–735

    CAS  PubMed  Google Scholar 

  12. Meier P, Zierler LL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731–744

    PubMed  Google Scholar 

  13. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM (1995) MR contrast due to intravascular magnetic susceptibility perturbations. Magn Res Med 34: 555–566

    CAS  Google Scholar 

  14. Villringer A, Rosen BR, Belliveau JW, et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effect. Magn Res Med 6: 164–174

    CAS  Google Scholar 

  15. Kennan RP, Zhong J, Gore JC (1994) Intravascular susceptibility contrast mechanism in tissues. Magn Res Med 31: 9–21

    CAS  Google Scholar 

  16. Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 12: 400–410

    CAS  PubMed  Google Scholar 

  17. Lassen NA (1984) Cerebral transit of an intravascular tracer may allow measurement of regional blood volume but not regional blood flow. J Cereb Blood Flow Metabol 4: 633–634

    CAS  Google Scholar 

  18. Rosen BR, Belliveau JW, Buchbinder BR, et al (1991) Contrast agent and cerebral hemodynamics. Magn Res Med 19: 285–292

    CAS  Google Scholar 

  19. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR (1994) Microscopic susceptibility variation and transverse relaxation : theory and experiment. Magn Res Med 31: 601–610

    CAS  Google Scholar 

  20. Rempp KA, Brix B, Wenz F, Becker CR, Guckel F, Lorenz WJ (1994) Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 193: 637–641

    CAS  PubMed  Google Scholar 

  21. Axel L (1980) Cerebral blood flow determination by rapid-sequence computed tomography. Radiology 137: 679–686

    CAS  PubMed  Google Scholar 

  22. Hagen T, Bartylla K, Piepgras U (1999) Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. J Comp Assist Tomogr 23: 257–264

    Article  CAS  Google Scholar 

  23. Starmer CF, Clarck DO (1970) Computer computations of cardiac output using the gamma-function. J Appl Physiol 28: 219–220

    Google Scholar 

  24. Fisel CR, Ackerman JL, Buxton RB, et al (1991) MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 17: 336–347

    CAS  PubMed  Google Scholar 

  25. Lassen NA, Perl W (1979) Tracer kinetic methods in medical physiology. Raven Press, New York, pp 76–101

  26. Simonsen CZ, Ostergaard L, Smith DF, Vestergaard-Poulsen P, Gyldensted C (2000) Comparison of gradient- and spin-echo imaging: CBF, CBV, and MTT measurements by bolus tracking. J Magn Reson Imaging. 12: 411–116

    Google Scholar 

  27. Wirestram R, Andersson L, Ostergaard L, et al (2000) Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques. Magn Reson Med 43: 691–700

    CAS  PubMed  Google Scholar 

  28. Willinsky R, Terbrugge K, Montanera W, Mikulis D, Wallace MC (1994) Venous congestion: an MR finding in dural arteriovenous malformations with cortical venous drainage. AJNR 15: 1501–1507

    CAS  Google Scholar 

  29. Mast H, Mohr JP, Osipov A, et al (1995) ‘Steal’ is an unestablished mechanism for the clinical presentation of cerebral arteriovenous malformations. Stroke 26: 1215–1220

    CAS  PubMed  Google Scholar 

  30. Weinand ME (2000) Vascular steal model of human temporal lobe epileptogenicity: the relationship between electrocorticographic interhemispheric propagation time and cerebral blood flow. Med Hypotheses 54: 717–720

    CAS  PubMed  Google Scholar 

  31. Meyer B, Schaller C, Frenkel C, Schramm J (1998) Physiological steal around AVMs of the brain is not equivalent to cortical ischemia. Neurol Res 20 [Suppl 1]: S13–S17

  32. Meyer B, Schaller C, Frenkel C, Ebeling B, Schramm J (1999) Distribution of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations. Stroke 30: 2623–2630

    CAS  PubMed  Google Scholar 

  33. Charbel FT, Hoffman WE, Misra M, Ausman JI (1998) Increased brain tissue oxygenation during arteriovenous malformation resection. Neurol Med Chir (Tokyo) 38 [Suppl]: 171–176

    Google Scholar 

  34. Sakaki T, Tsujimoto S, Nishitani M, Ishida Y, Morimoto T (1992) Perfusion pressure breakthrough threshold of cerebral autoregulation in the chronically ischemic brain: an experimental study in cats. J Neurosurg 76: 478–485

    CAS  PubMed  Google Scholar 

  35. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 36: 715–725

    CAS  PubMed  Google Scholar 

  36. Marquart DW (1963) An algorithm for least squares estimation of non-linear parameters. J Soc Industr Appl Math 11: 431–441

    Google Scholar 

  37. Young WL, Pile-Spellman J, Prohovnik I, Kader A, Stein BM (1994) Evidence for adaptive autoregulatory displacement in hypotensive cortical territories adjacent to arteriovenous malformations. Columbia University AVM Study Project. Neurosurgery 34: 601–611

    CAS  PubMed  Google Scholar 

  38. Lazar RM, Marshall RS, Pile-Spellman J, et al (2000) Interhemispheric transfer of language in patients with left frontal cerebral arteriovenous malformation. Neuropsychologia 38: 1325–1332

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ducreux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ducreux, D., Meder, J.F., Fredy, D. et al. MR perfusion imaging in proliferative angiopathy. Neuroradiology 46, 105–112 (2004). https://doi.org/10.1007/s00234-003-1045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-003-1045-6

Keywords

Navigation