Skip to main content
Log in

MR angiography of the intracranial vessels: technical aspects and clinical applications

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Evaluation of the intracranial circulation provides valuable information in the diagnosis and prognosis of various intracranial abnormalities and may influence patient management. Technical advances in magnetic resonance angiography (MRA) have improved the accuracy of this technique in various clinical situations, such as aneurysms, arterial and venous steno-occlusive diseases, vascular malformations, inflammatory arterial diseases, preoperative assessment of the patency of dural sinuses, and congenital vascular abnormalities. In many centers, MRA has replaced conventional digital subtraction angiography in screening for intracranial vascular disease, because of its non-invasive and non-ionizing character. Several MRA techniques have been developed for the imaging of the intracranial vascular system, such as time-of-flight MRA (TOF MRA), phase-contrast MRA (PC MRA), and more recently contrast-enhanced MRA (CE MRA). In the evaluation of steno-occlusive disease, the three-dimensional (3D) TOF-MRA technique is recommended for arterial evaluation, and the 2D TOF or 2D PC-MRA technique for venous evaluation. For the evaluation of aneurysms and arteriovenous malformations (AVMs), we recommend the 3D CE-MRA technique, especially dynamic sequences in case of AVM. In this review, the technical aspects, limitations, and optimization of these MRA techniques will be discussed together with their indications in intracranial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bosmans H, Marchal G, Lukito G, Yicheng N, Wilms G, Laub G, Baert AL (1995) Time-of-flight MR angiography of the brain: comparison of acquisition techniques in healthy volunteers. Am J Roentgenol 164:161–167

    CAS  PubMed  Google Scholar 

  2. Wilms G, Bosmans H, Demaerel Ph, Marchal G (2001) Magnetic resonance angiography of the intracranial vessels. Eur J Radiol 38:10–18

    Article  CAS  PubMed  Google Scholar 

  3. Blatter DD, Parker DL, Ah SS, Bahr AL, Robinson RO, Schwartz RB, Jolesz FA, Boyer RS (1992) Cerebral MR angiography with multiple overlapping thin slab acquisition. Part II. Early clinical experience. Radiology 183:379–389

    CAS  Google Scholar 

  4. Mathews VP, Elster AD, King JC, Ulmer JL, Hamilton CA, Strottmann JM (1995) Combined effects of magnetization transfer and gadolinium in cranial MR imaging and MR angiography. Am J Roentgenol 164:169–172

    CAS  PubMed  Google Scholar 

  5. Haacke EM, Masaryk TJ, Wielopolski PA, Zypman FR, Tkach JA, Amartur S, Mitchell J, Clampitt M, Paschal C (1990) Optimizing blood vessel contrast in fast three-dimensional MRI. Magn Reson Med 14:202–221

    CAS  PubMed  Google Scholar 

  6. Atkinson D, Brandt-Zawadzki M, Gillan G, Purdy D, Laub G (1994) Improved MR angiography magnetization transfer suppression with variable flip angle excitation and increased resolution. Radiology 190:890–894

    CAS  PubMed  Google Scholar 

  7. Marchal G, Michiels J, Bosmans H, Van Hecke P (1992) Contrast enhanced MRA of the brain. J Comput Assist Tomogr 16:25–29

    CAS  PubMed  Google Scholar 

  8. Özsarlak Ö, Parizel PM, Van Goethem JW (2004) Low-dose gadolinium enhanced 3D time-of-flight MR angiography of the intracranial vessels using PAT optimized phased array 8-channel head coil. Eur Radiol 14:2067–2071

    Google Scholar 

  9. Jung HW, Chang KH, Choi DS, Han MH, Han MC (1995) Contrast-enhanced MR angiography for the diagnosis of intracranial vascular disease: optimal dose of gadopentate dimeglumine. Am J Roentgenol 165:1251–1255

    CAS  PubMed  Google Scholar 

  10. Dumoulin CL, Souza SP, Walker MF, Wagle W (1989) Three-dimensional phase contrast angiography. Magn Reson Med 9:139–149

    CAS  PubMed  Google Scholar 

  11. Marks MP, Pelc MJ, Ross MR, Enzmann DR (1992) Determination of cerebral blood flow with a phase-contrast cine MR imaging technique: evaluation of normal subjects and patients with arteriovenous malformation. Radiology 182:467–476

    CAS  PubMed  Google Scholar 

  12. Oelerich M, Lentschig MG, Zunker P, Reimer P, Rummeny EJ, Schuierer G (1998) Intracranial vascular stenosis and occlusion: comparison of 3D time-of-flight and 3D phase-contrast MR angiography. Neuroradiology 40:567–573

    Article  CAS  PubMed  Google Scholar 

  13. Korosec FR, Mistretta CA (1998) MR angiography: basic principles and theory. Magn Reson Imaging Clin N Am 6:223–256

    CAS  PubMed  Google Scholar 

  14. Van Goethem JW, Hauwe L van den, Ozsarlak O, Parizel PM (2003) Phase-contrast magnetic resonance angiography. JBR-BTR 86:340–344

    CAS  PubMed  Google Scholar 

  15. Hilfiker PR, Herfkens RJ, Heiss SG, Alley MT, Fleischmann D, Pelc NJ (2000) Partial fat-saturated contrast-enhanced three-dimensional MR angiography compared with non-fat-saturated and conventional fat-saturated MR angiography. Radiology 216:298–303

    CAS  PubMed  Google Scholar 

  16. Riederer SJ, Bernstein MA, Breen JF, Busse RF, Ehman RI, Fain SB, Hulshizer TC, Iii JH, King BF, Kruger DG, Rosmann PJ, Shah S (2000) Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and technical reliability in 330 patient studies. Radiology 215:584–593

    CAS  PubMed  Google Scholar 

  17. Schick F (1996) Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation. J Comput Assist Tomogr 20:73–79

    Article  CAS  PubMed  Google Scholar 

  18. Lee VS, Flyer MA, Weinreb JC, Krinsky GA, Rofsky NM (1996) Image subtraction in gadolinium-enhanced MR imaging. Am J Roentgenol 167:1427–1432

    CAS  PubMed  Google Scholar 

  19. Masarsky TJ, Modic MT, Ross JS, Ruggieri PM, Laub GA, Lenz GW, Haacke EM, Selman WR, Wiznitzer M, Harik SI (1989) Intracranial circulation: preliminary clinical results with three-dimensional (volume) MR angiography. Radiology 171:793–799

    PubMed  Google Scholar 

  20. Porter JR, Wright SM, Reykowski A (1998) A 16-element phased-array head coil. Magn Reson Med 40:272–279

    CAS  PubMed  Google Scholar 

  21. Sodickson DK, McKenzie CA, Ohliger MA, Yeh AN, Price MD (2002) Recent advances in image reconstruction, coil sensitivity calibration, and coil design for SMASH and generalized parallel MRI. MAGMA 13:158–163

    PubMed  Google Scholar 

  22. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Mag Reson Med 42:952–962

    Article  CAS  Google Scholar 

  23. Heidemann RM, Özsarlak Ö, Parizel PM, Michiels J, Kiefer B, Jellus V, Muller M, Breuer F, Blaimer M, Griswold MA, Jakob PM (2003) A brief review of parallel magnetic resonance imaging. Eur Radiol 13:2323–2337

    Article  PubMed  Google Scholar 

  24. Willinek WA, Born M, Simon B, Tschampa HJ, Krautmacher C, Gieseke J, Urbach H, Textor HJ, Schild HH (2003) Time-of-flight MR angiography of 3.0-T imaging and 1.5-T imaging—initial experience. Radiology 229:913–920

    PubMed  Google Scholar 

  25. Al-Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three Tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187

    Article  PubMed  Google Scholar 

  26. Heiserman JE, Drayer BP, Keller PJ, Fram EK (1992) Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology 185:667–673

    CAS  PubMed  Google Scholar 

  27. Fürst G, Hofer M, Sitzer M, Kahn T, Muller E, Modder U (1995) Factors influencing flow-induced signal loss in MR angiography: an in vitro study. J Comput Assist Tomogr 19:692–699

    PubMed  Google Scholar 

  28. Hirai T, Korogi Y, Ono K, Nagano M, Maruoka K, Uemura S, Takahashi M (2002) Prospective evaluation of suspected steno-occlusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. Am J Neuroradiol 23:93–101

    PubMed  Google Scholar 

  29. Barber PA, Davis SM, Darby DG, Desmond PM, Gerraty RP, Yang Q, Jolley D, Donnan GA, Tress BM (1999) Absent middle cerebral artery flow predicts the presence and evolution of the ischemic penumbra. Neurology 52:1125–1132

    CAS  PubMed  Google Scholar 

  30. Heiserman JE, Dean BL, Hodak JA, Flom RA, Bird CR, Drayer BP, Fram EK (1994) Neurological complications of cerebral angiography. Am J Neuroradiol 15:1401–1407

    CAS  PubMed  Google Scholar 

  31. Sankhla SK, Gunawardena WJ, Coutinho CMA, Jones AP, Keogh AJ (1996) Magnetic resonance angiography in the management of aneurysmal subarachnoid hemorrhage: a study of 51 cases. Neuroradiology 38:724–729

    Article  CAS  PubMed  Google Scholar 

  32. Bosmans H, Wilms G, Marchal G, Demaerel P, Baert AL (1995) Characterization of intracranial aneurysms with MR angiography. Neuroradiology 37:262–266

    Article  CAS  PubMed  Google Scholar 

  33. Adams WM, Laitt RD, Jackson A (2000) The role of MR angiography in the pretreatment assessment of intracranial aneurysms: a comparative study. Am J Neuroradiol 21:1618–1628

    CAS  PubMed  Google Scholar 

  34. White PM, Wardlaw JM, Lindsay KW, Sloss S, Patel DK, Teasdale EM (2003) The non-invasive detection of intracranial aneurysms: are neuroradiologists any better than other observers? Eur Radiol 13:389–396

    PubMed  Google Scholar 

  35. Brugieres P, Blustajn J, Le Guerinel C, Meder J, Thomas P, Gaston A (1998) Magnetic resonance angiography of giant intracranial aneurysms. Neuroradiology 40:96–102

    Article  CAS  PubMed  Google Scholar 

  36. Jager HR, Ellamushi H, Moore EA, Grieve JP, Kitchen ND, Taylor WJ (2000) Contrast-enhanced MR angiography of intracranial giant aneurysms. Am J Neuroradiol 21:1900–1907

    CAS  PubMed  Google Scholar 

  37. Fernandez-Zubillaga A, Guglielmi G, Vinuela F, Duckwiler G (1994) Endovascular occlusion of intracranial aneurysms with electrolytically detachable coils: correlation of aneurysm neck size and treatment results. Am J Neuroradiol 15:815–820

    CAS  PubMed  Google Scholar 

  38. Cottier JP, Bleuzen-Couthon A, Gallas S, Vinikoff-sonier CB, Bertrand P, Domengie F, Barantin L, Herbreteau D (2003) Intracranial aneurysms treated with Guglielmi detachable coils: is contrast material necessary in the follow-up with 3D time-of-flight MR angiography? Am J Neuroradiol 24:1797–1803

    PubMed  Google Scholar 

  39. Kähära VJ, Seppanen SK, Ryymin PS, Mattila P, Kuurne T, Laasonen EM (1999) MR angiography with three-dimensional time-of-flight and targeted maximum-intensity-projection reconstructions in the follow-up of intracranial aneurysms embolized with Guglielmi detachable coils. Am J Neuroradiol 20:1470–1475

    CAS  PubMed  Google Scholar 

  40. Anzalone N, Righi C, Simionato F, Scomazzoni F, Pagani G, Calori G, Santino P, Scotti G (2000) Three-dimensional time-of-flight MR angiography in the evaluation of intracranial aneurysms treated with Guglielmi detachable coils. Am J Neuroradiol 21:746–752

    CAS  PubMed  Google Scholar 

  41. Boulin A, Pierot L (2001) Follow-up intracranial aneurysms treated with detachable coils: comparison of gadolinium enhanced 3D time-of-flight MR angiography and digital subtraction angiography. Radiology 219:108–113

    CAS  PubMed  Google Scholar 

  42. Leclerc X, Navez JF, Gauvrit JY, Lejeune JP, Pruvo JP (2002) Aneurysms of the anterior communicating artery treated with Guglielmi detachable coils: follow-up with contrast-enhanced MR angiography. Am J Neuroradiol 23:1121–1127

    PubMed  Google Scholar 

  43. Montanera W, Marotta TR, terBrugge KG, Lasjaunias P, Willinsky R, Wallace MC (1990) Cerebral arteriovenous malformations associated with moyamoya phenomenon. Am J Neuroradiol 11:1153–1156

    CAS  PubMed  Google Scholar 

  44. Noorbehesht B, Fabrikant JI, Enzmann DR (1987) Size determination of supratentorial arteriovenous malformations by MR, CT and angio. Neuroradiology 29:512–518

    Article  CAS  PubMed  Google Scholar 

  45. Westphal M, Grzyska U (2000) Clinical significance of pedicle aneurysms on feeding vessels, especially those located in infratentorial arteriovenous malformations. J Neurosurg 92:995–1001

    CAS  PubMed  Google Scholar 

  46. Fulbright RK, Chaloupka JC, Putman CM, Sze GK, Merriam MM, Lee GK, Fayad PB, Awad IA, White RI Jr (1998) MR of hereditary hemorrhagic telangiectasia: prevalence and spectrum of cerebrovascular malformations. Am J Neuroradiol 19:477–484

    CAS  PubMed  Google Scholar 

  47. Tsuchiyaa K, Katasea S, Yoshinoa A, Hachiyaa J (2000) MR digital subtraction angiography of cerebral arteriovenous malformations. Am J Neuroradiol 21:707–711

    PubMed  Google Scholar 

  48. Carroll TJ (2002) The emergence of time-resolved contrast-enhanced MR imaging for intracranial angiography. Am J Neuroradiol 23:346–348

    PubMed  Google Scholar 

  49. Griffiths PD, Hoggard N, Warren DJ, Wilkinson ID, Anderson B, Romanowski CA (2000) Brain arteriovenous malformations: assessment with dynamic MR digital subtraction angiography. Am J Neuroradiol 21:1892–1899

    CAS  PubMed  Google Scholar 

  50. Strecker R, Scheffler K, Klisch J, Lehnhardt S, Winterer S, Laubenberger J, Fischer H, Hennig J (2000) Fast functional MRA using time-resolved projection MR-angiography with correlation analysis. Magn Reson Med 43:303–309

    Article  CAS  PubMed  Google Scholar 

  51. Oppenheim C, Meder JF, Trystram D, Nataf F, Godon-Hardy S, Blustajn J, Merienne L, Schlienger M, Fredy D (1999) Radiosurgery of cerebral arteriovenous malformation: is an early angiogram needed? Am J Neuroradiol 20:475–481

    CAS  PubMed  Google Scholar 

  52. Mitchell PJ, Rosenfeld JV, Dargaville P, Loughnan P, Ditchfield MR, Frawley G, Tress BM (2001) Endovascular management of vein of Galen aneurismal malformations presenting in the neonatal period. Am J Neuroradiol 22:1403–1409

    CAS  PubMed  Google Scholar 

  53. Campi A, Rodesch G, Scotti G, Lasjaunias P (1998) Aneurysmal malformation of the vein of Galen in three patients: clinical and radiological follow-up. Neuoradiology 40:816–821

    Article  CAS  Google Scholar 

  54. Ayanzen RH, Bird CR, Keller PJ, McCully FJ, Theobald MR, Heiserman JE (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. Am J Neuroradiol 21:74–78

    CAS  PubMed  Google Scholar 

  55. Yousem DM, Balakrishnan J, Debrun GM, Bryan RN (1990) Hyperintense thrombus on GRASS MR images: potential pitfall in flow evaluation. Am J Neuroradiol 11:51–58

    CAS  PubMed  Google Scholar 

  56. Liauw L, Buchem MA van, Spilt A, Bruine FT de, Berg R van den, Hermans J, Wasser MNJM (2000) MR angiography of the intracranial venous system. Radiology 214:678–682

    CAS  PubMed  Google Scholar 

  57. Vogl TJ, Bergman C, Villringer A, Einhaup K, Lissner J, Felix R (1994) Dural sinus thrombosis: value of venous MR angiography for diagnosis and follow-up. Am J Roentgenol 162:1191–1198

    CAS  PubMed  Google Scholar 

  58. Kallmes DF, Cloft HJ, Jensen ME, Kaptain GJ, Dion JE, Matsumoto JA (1998) Dural arteriovenous fistula: a pitfall of time-of-flight MR venography for the diagnosis of sinus thrombosis. Neuroradiology 40:242–244

    Article  CAS  PubMed  Google Scholar 

  59. Liang L, Korogi Y, Sugahara T, Onomichi M, Shigematsu Y, Yanga D, Kitajimaa M, Hiaia Y, Takahashia M (2001) Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. Am J Neuroradiol 22:481–492

    CAS  PubMed  Google Scholar 

  60. Dormont L, Sag K, Biondi A, Wechsler B, Marsault C (1995) Gadolinium-enhanced MR of chronic dural sinus thrombosis. Am J Neuroradiol 16:1347–1352

    CAS  PubMed  Google Scholar 

  61. Wilms G, Bosmans H, Marchal G, Demaerel P, Goffin J, Plets C, Baert AL (1995) Magnetic resonance angiography of supratentorial tumors: comparison with selective digital subtraction angiography. Neuroradiology 37:42–47

    CAS  PubMed  Google Scholar 

  62. Pomper MG, Miller TJ, Stone JH, Tidmore WC, Hellmann DB (1999) CNS vasculitis in autoimmune disease: MR imaging findings and correlation with angiography. Am J Neuroradiol 20:75–85

    CAS  PubMed  Google Scholar 

  63. Duna GF, Calabrese LH (1995) Limitations of invasive modalities in the diagnosis of primary angiitis of the central nervous system. J Rheumatol 22:662–667

    CAS  PubMed  Google Scholar 

  64. Schluter A, Hirsch W, Jassoy A, Komhuber M, Behrmann C, Keyser G, Spielmann RP (2001) MR angiography in diagnosis of vasculitis and benign nagiopathies of the central nervous system. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 173:522–527

    Article  CAS  PubMed  Google Scholar 

  65. Demaerel P, Wilms G, Casaer P, Casteels-Van Daele M, Bosmans H, Marchal G, Baert AL (1991) Moyamoya disease: MRI and MR angiography. Neuroradiology 33 (Suppl):50–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özkan Özsarlak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özsarlak, Ö., Van Goethem, J.W., Maes, M. et al. MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46, 955–972 (2004). https://doi.org/10.1007/s00234-004-1297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-004-1297-9

Keywords

Navigation