Skip to main content

Advertisement

Log in

Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Previous studies in apes and monkeys have shown that the red nucleus receives projections from the sensorimotor and premotor cortices, whereas other experiments carried out with injured human brains have found corticorubral projections issuing from associative areas. Therefore, we reassessed in vivo the human anatomical projections from the cerebral cortex to the red nucleus using diffusion tensor imaging (DTI) axonal tracking.

Methods

The connectivity between the cerebral cortex and the red nuclei of seven volunteers was studied at 1.5 T using streamlined DTI axonal tracking.

Results

Trajectories were constantly tracked between the red nuclei and the ipsilateral pericentral and prefrontal cortices, as well as the temporal cortex and the striatum in two subjects. Within the cerebral trunk, trajectories also include the superior cerebellar peduncle and the central tegmental tract.

Conclusion

The human red nucleus receives its main afferences from the sensorimotor and prefrontal cortices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Massion J (1967) The mammalian red nucleus. Physiol Rev 47:383–436

    PubMed  CAS  Google Scholar 

  2. Humphrey DR, Gold R, Reed DJ (1984) Sizes, laminar and topographic origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94

    Article  PubMed  CAS  Google Scholar 

  3. Keifer J, Houk JC (1994) Motor function of the cerebellorubrospinal system. Physiol Rev 74–13:509–542

    Google Scholar 

  4. Von Monakow C (1895) Experimentelle und pathologisch-anatomische Untersuchungen über die Haubenregion, den Schlügel und die Regio subthalamica nebst Beiträge zur Kenntnis früh erworbener Gross- und Kleinhirndefecte. Arch Psychiat Nervenkr 27:1–128, 386–478

    Article  Google Scholar 

  5. Archambault L (1914–1915) Les connexions corticales du noyau rouge. Nouvelle Iconographie Salpêtrière 27:188–225

    Google Scholar 

  6. Meyer M (1949) Study of efferent connexions of the frontal lobe in the human brain after leucotomy. Brain 72:265–296

    PubMed  CAS  Google Scholar 

  7. Kanki S, Ban T (1952) Corticofugal connections of the frontal lobe in man. Med J Osaka University 3:201–222

    Google Scholar 

  8. Nieuwenhuys R, Voogt J, vanHuijzen C (eds) (1988) The human central nervous system. A synopsis and atlas, third revised edition. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Lehéricy S, Ducros M, Krainik A, François C, Van de Moortele PF, Ugurbil K, Kim DS (2004) 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cereb Cortex 14:1302–1309

    Article  PubMed  Google Scholar 

  10. Déjérine J (1980) Anatomie des centres nerveux, vol 2. Masson, Paris New York Barcelona Milan

    Google Scholar 

  11. Humphrey DR, Rietz RR (1976) Cells of origin of corticorubral projections from the arm area of primate motor cortex and their synaptic actions in the red nucleus. Brain Res 110:162–169

    Article  PubMed  CAS  Google Scholar 

  12. Tokuno H, Takada M, Nambu A, Inase M (1995) Somatotopical projections from the supplementary motor area to the red nucleus in the macaque monkey. Exp Brain Res 106:351–355

    Article  PubMed  CAS  Google Scholar 

  13. Hartmann-von Monakow K, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 34:91–105

    Google Scholar 

  14. ten Donkelaar HJ (1988) Evolution of the red nucleus and rubrospinal tract. Behav Brain Res 28:9–20

    Article  PubMed  Google Scholar 

  15. Staempfli P, Jaermann T, Crelier GR, Kollias S, Valavanis A, Boesiger P (2006) Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. Neuroimage 30:110–120

    Article  PubMed  CAS  Google Scholar 

  16. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady JM, Smith SM (2003) Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50:1077–1088

    Article  PubMed  CAS  Google Scholar 

  17. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurosci 41:31–60

    Article  CAS  Google Scholar 

  18. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  19. Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  20. Ito M (1993) Movement and thought: identical central mechanisms by the cerebellum. Trends Neurosci 16:447–450

    Article  Google Scholar 

  21. Gao JH, Parsons LM, Bower JM, Xiong J, LI J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272:545–547

    PubMed  CAS  Google Scholar 

  22. Sörös P, Sokoloff LG, Bose A, McIntosh AR, Graham SJ, Stuss DT (2006) Clustered functional MRI of overt speech production. Neuroimage. DOI 10.1016/j.neuroimage.2006.02.046

  23. Dunckley P, Wise R, Fairhurst M, Hobden P, Aziz Q, Chang L, Tracey I (2005) A comparison of visceral and somatic pain processing in the human brainstem using functional magnetic resonance imaging. J Neurosci 25:7333–7341

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Pu Y, Gao JH, Parsons LM, Xiong J, Liotti M, Bower JM, Fox PT (2000) The human red nucleus and lateral cerebellum in supporting roles for sensory information processing. Hum Brain Mapp 10:147–159

    Article  PubMed  CAS  Google Scholar 

  25. Kennedy PR, Gibson AR, Houk JC (1986) Functional and anatomic differentiation between parvocellular and magnocellular regions of red nucleus in monkey. Brain Res 364:124–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of Dr. Adrian Istoc with the iconography.

Confict of interest statement

We declare that we have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Habas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habas, C., Cabanis, E.A. Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology 48, 755–762 (2006). https://doi.org/10.1007/s00234-006-0117-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0117-9

Keywords

Navigation