Skip to main content
Log in

Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Until recently, functional magnetic resonance imaging (fMRI) with blood oxygen level-dependent (BOLD) contrast, was mainly used to study brain physiology. The activation signal measured with fMRI is based upon the changes in the concentration of deoxyhaemoglobin that arise from an increase in blood flow in the vicinity of neuronal firing. Technical limitations have impeded such research in the human cervical spinal cord. The purpose of this investigation was to determine whether a reliable fMRI signal can be elicited from the cervical spinal cord during fingertapping, a complex motor activity. Furthermore, we wanted to determine whether the fMRI signal could be spatially localized to the particular neuroanatomical location specific for this task.

Methods

A group of 12 right-handed healthy volunteers performed the complex motor task of fingertapping with their right hand. T2*-weighted gradient-echo echo-planar imaging on a 1.5-T clinical unit was used to image the cervical spinal cord. Motion correction was applied. Cord activation was measured in the transverse imaging plane, between the spinal cord levels C5 and T1.

Results

In all subjects spinal cord responses were found, and in most of them on the left and the right side. The distribution of the activation response showed important variations between the subjects. While regions of activation were distributed throughout the spinal cord, concentrated activity was found at the anatomical location of expected motor innervation, namely nerve root C8, in 6 of the 12 subjects.

Conclusion

fMRI of the human cervical spinal cord on an 1.5-T unit detects neuronal activity related to a complex motor task. The location of the neuronal activation (spinal cord segment C5 through T1 with a peak on C8) corresponds to the craniocaudal anatomical location of the neurons that activate the muscles in use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Forster BB, MacKay AL, Whittall KP, Kiehl KA, Smith AM, Hare RD, Liddle PF (1998) Functional magnetic resonance imaging: the basics of blood-oxygen-level dependent (BOLD) imaging. Can Assoc Radiol J 49:320–329

    PubMed  CAS  Google Scholar 

  2. Howseman AM, Bowtell RW (1999) Functional magnetic resonance imaging: imaging techniques and contrast mechanisms. Philos Trans R Soc Lond B Biol Sci 354:1179–1194

    Article  PubMed  CAS  Google Scholar 

  3. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  PubMed  CAS  Google Scholar 

  4. Yetkin FZ, McAuliffe TL, Cox R, Haughton VM (1996) Test-retest precision of functional MR in sensory and motor task activation. AJNR Am J Neuroradiol 17:95–98

    PubMed  CAS  Google Scholar 

  5. Backes WH, Mess WH, Wilmink JT (2001) Functional MR imaging of the cervical spinal cord by use of median nerve stimulation and fist clenching. AJNR Am J Neuroradiol 22:1854–1859

    PubMed  CAS  Google Scholar 

  6. Yoshizawa T, Nose T, Moore GJ, Sillerud LO (1996) Functional magnetic resonance imaging of motor activation in the human cervical spinal cord. Neuroimage 4(3 Pt 1):174–182

    Article  PubMed  CAS  Google Scholar 

  7. Stroman PW, Nance PW, Ryner LN (1999) BOLD MRI of the human cervical spinal cord at 3 tesla. Magn Reson Med 42:571–576

    Article  PubMed  CAS  Google Scholar 

  8. Madi S, Flanders AE, Vinitski S, Herbison GJ, Nissanov J (2001) Functional MR imaging of the human cervical spinal cord. AJNR Am J Neuroradiol 22:1768–1774

    PubMed  CAS  Google Scholar 

  9. Wilmink JT, Backes WH, Mess WH (2003) Functional MRI of the spinal cord: will it solve the puzzle of pain? JBR-BTR 86:293–294

    PubMed  CAS  Google Scholar 

  10. Stroman PW, Ryner LN (2001) Functional MRI of motor and sensory activation in the human spinal cord. Magn Reson Imaging 19:27–32

    Article  PubMed  CAS  Google Scholar 

  11. Stroman PW, Tomanek B, Krause V, Frankenstein UN, Malisza KL (2002) Mapping of neuronal function in healthy and injured human spinal cord with spinal fMRI. Neuroimage 17(4):1854–1860

    Article  PubMed  CAS  Google Scholar 

  12. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B (2002) Functional magnetic resonance imaging of the human cervical spinal cord with stimulation of different sensory dermatomes. Magn Reson Imaging 20:1–6

    Article  PubMed  CAS  Google Scholar 

  13. Porszasz R, Beckmann N, Bruttel K, Urban L, Rudin M (1997) Signal changes in the spinal cord of the rat after injection of formalin into the hindpaw: characterization using functional magnetic resonance imaging. Proc Natl Acad Sci USA 94:5034–5039

    Article  PubMed  CAS  Google Scholar 

  14. Stracke CP, Pettersson LG, Schoth F, Moller-Hartmann W, Krings T (2005) Interneuronal systems of the cervical spinal cord assessed with BOLD imaging at 1.5 T. Neuroradiology 47:127–133

    Article  PubMed  CAS  Google Scholar 

  15. Hesselmann V, Zaro Weber O, Wedekind C, Krings T, Schulte O, Kugel H, Krug B, Klug N, Lackner KJ (2001) Age related signal decrease in functional magnetic resonance imaging during motor stimulation in humans. Neurosci Lett 308:141–144

    Article  PubMed  CAS  Google Scholar 

  16. Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB (2002) Hemodynamic response changes in cerebrovascular disease: implications for functional MR imaging. AJNR Am J Neuroradiol 23:1222–1228

    PubMed  Google Scholar 

  17. Yousry I, Naidich TP, Yousry TA (2001) Functional magnetic resonance imaging. Factors modulating the cortical activation pattern of the motor system. Neuroimaging Clin North Am 11:195–202

    PubMed  CAS  Google Scholar 

  18. Mohamed FB, Tracy JI, Faro SH, Emperado J, Koenigsberg R, Pinus A, Tsai FY (2000) Investigation of alternating and continuous experimental task designs during single finger opposition fMRI: a comparative study. J Comput Assist Tomogr 24:935–941

    Article  PubMed  CAS  Google Scholar 

  19. Song AW, Mao H, Muthupillai R, Haist F, Dixon WT (1999) Segmented spin-echo pulses to increase fMRI signal: repeated intrinsic diffusional enhancement. Magn Reson Med 42:631–635

    Article  PubMed  CAS  Google Scholar 

  20. Norris DG, Zysset S, Mildner T, Wiggins CJ (2002) An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T. Neuroimage 15:719–726

    Article  PubMed  Google Scholar 

  21. Bosch V (2000) Statistical analysis of multi-subject fMRI data: assessment of focal activations. J Magn Reson Imaging 11:61–64

    Article  PubMed  CAS  Google Scholar 

  22. Hung LK, Zhao X (2003) Relationship of cervical spinal rootlets and the inferior vertebral notch. Clin Orthop 409:131–137

    Article  PubMed  Google Scholar 

  23. Palastanga N, Field D, Soames R (1998) Anatomy and human movement. Structure and function. Butterworth-Heinemann, Oxford, pp 110–132

    Google Scholar 

  24. Monkhouse S (2001) Clinical anatomy. A core text with self-assessment. Churchill Livingstone, London, pp 172–179

    Google Scholar 

  25. Jansma JM, Ramsey NF, Kahn RS (1998) Tactile stimulation during finger opposition does not contribute to 3D fMRI brain activity pattern. Neuroreport 9:501–505

    PubMed  CAS  Google Scholar 

  26. Komisaruk BR, Mosier KM, Liu W-C, Criminale C, Zaborszky L, Whipple B, Kalnin A (2002) Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol 23:609–617

    PubMed  Google Scholar 

  27. Kahle W, Leonhardt H, Platzer W (1999) Sesam Atlas van de anatomie. Deel 3 zenuwstelsel en zintuigen. Bosch & Keuning, Baarn Nederland, pp 44–53

    Google Scholar 

  28. Wu DH, Lewin JS, Duerk JL (1997) Inadequacy of motion correction algorithms in functional MRI: role of susceptibility-induced artifacts. J Magn Reson Imaging 7:365–370

    Article  PubMed  CAS  Google Scholar 

  29. Mikulis DJ, Wood ML, Zerdoner OA, Poncelet BP (1994) Oscillatory motion of the normal cervical spinal cord. Radiology 192:117–121

    PubMed  CAS  Google Scholar 

  30. Muto N, Shinomiya K, Komori H, Mochida K, Furuya K (1995) Spinal cord monitoring of the ventral funiculus function. Analysis of spinal field potentials after galvanic vestibular stimulation. Spine 20:2429–2434

    Article  PubMed  CAS  Google Scholar 

  31. Krings T (2006) Introduction to fMR Imaging of the Spinal Cord. ASNR abstract book, pp 66–67

  32. Field AS, Yen YF, Burdette JH, Elster AD (2000) False cerebral activation on BOLD functional MR images: study of low-amplitude motion weakly correlated to stimulus. AJNR Am J Neuroradiol 21:1388–1396

    PubMed  CAS  Google Scholar 

  33. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B (2002) Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord. Magn Reson Med 48:122–127

    Article  PubMed  CAS  Google Scholar 

  34. Stroman PW, Krause V, Malisza KL, Frankenstein UN, Tomanek B (2001) Characterization of contrast changes in functional MRI of the human spinal cord at 1.5 T. Magn Reson Imaging 19:833–838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are most grateful to Prof. Gert Verpooten for reviewing the statistical analysis.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. M. Van Goethem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govers, N., Béghin, J., Van Goethem, J.W.M. et al. Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?. Neuroradiology 49, 73–81 (2007). https://doi.org/10.1007/s00234-006-0162-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0162-4

Keywords

Navigation