Skip to main content
Log in

Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

It is important to have information on cavernous sinus extension and bony destruction in pituitary macroadenomas before surgery, but magnetic resonance (MR) imaging cannot always depict them. In the present study we sought to determine whether multidetector-row computed tomography (MDCT) could provide preoperative information in addition to that provided by MR imaging in pituitary macroadenoma.

Methods

The subjects comprised 33 consecutive patients (15 women, 18 men; mean age 50 years) with surgically proven macroadenoma. For MDCT, using the soft-tissue window and bone window, three orthogonal multiplanar reconstruction images were generated from venous-phase contrast-enhanced 0.5-mm isotropic voxel data. MDCT and MR images were evaluated with regard to: (1) clarity of tumor margins; (2) identification of the normal pituitary gland; (3) identification of erosion or destruction of the sellar floor; and (4) visualization of the adjacent optic pathways.

Results

MDCT more clearly demonstrated the lateral tumor margin than MR imaging (P = 0.002). No significant differences in visualization of the normal pituitary gland were noted between MDCT and dynamic MR imaging (P = 0.7). MDCT more clearly demonstrated sellar floor erosion or destruction at the sphenoid sinus than MR imaging (P < 0.001). MR imaging was superior to MDCT for visualizing the adjacent optic pathways (P < 0.001).

Conclusion

MDCT is superior to MR imaging for assessing lateral tumor margin and the sellar floor at the sphenoid sinus. MDCT offers useful preoperative information in addition to that obtained from MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kucharczyk W, Davis DO, Kelly WM, Sze G, Norman D, Newton TH (1986) Pituitary adenomas: high-resolution MR imaging at 1.5 T. Radiology 161:761–765

    PubMed  CAS  Google Scholar 

  2. Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14

    PubMed  CAS  Google Scholar 

  3. Korogi Y, Takahashi M (1995) Current concepts of imaging in patients with pituitary/hypothalamic dysfunction. Semin Ultrasound CT MRI 16:270–278

    Article  CAS  Google Scholar 

  4. Miki Y, Matsuo M, Nishizawa S, Kuroda Y, Keyaki A, Makita Y, Kawamura J (1990) Pituitary adenomas and normal pituitary tissue: enhancement patterns on gadopentetate-enhanced MR imaging. Radiology 177:35–38

    PubMed  CAS  Google Scholar 

  5. Saeki N, Yamaura A, Numata T, Hoshi S (1999) Bone window CT evaluation of the nasal cavity for the transsphenoidal approach. Br J Neurosurg 13:285–289

    Article  PubMed  CAS  Google Scholar 

  6. Saeki N, Iuchi T, Higuchi Y, Uchino Y, Murai H, Isono S, Yasuda T, Minagawa M, Yamaura A, Sunami K (2000) Bone CT evaluation of nasal cavity of acromegalics – its morphological and surgical implication in comparison to non-acromegalics. Endocr J 47 Suppl:S65–S68

    PubMed  Google Scholar 

  7. Abe T, Asahina N, Kunii N, Ikeda H, Izumiyama H (2003) Usefulness of bone window CT images parallel to the transnasal surgical route for pituitary disorders. Acta Neurochir (Wien) 145:127–131

    Article  CAS  Google Scholar 

  8. Naim UR, Jamjoom A, Jamjoom ZA (1996) Modified coronal computerized tomographic cuts for transsphenoidal surgery. Technical note. Neurosurg Rev 19:85–88

    Article  Google Scholar 

  9. Davis PC, Hoffman JC Jr, Spencer T, Tindall GT, Braun IF (1987) MR imaging of pituitary adenoma: CT, clinical, and surgical correlation. AJR Am J Roentgenol 148:797–802

    PubMed  CAS  Google Scholar 

  10. Lundin P, Bergstrom K, Thuomas KA, Lundberg PO, Muhr C (1991) Comparison of MR imaging and CT in pituitary macroadenomas. Acta Radiol 32:189–196

    Article  PubMed  CAS  Google Scholar 

  11. Kulkarni MV, Lee KF, McArdle CB, Yeakley JW, Haar FL (1988) 1.5-T MR imaging of pituitary microadenomas: technical considerations and CT correlation. AJNR Am J Neuroradiol 9:5–11

    PubMed  CAS  Google Scholar 

  12. Nieman K, Oudkerk M, Rensing BJ, van Ooijen P, Munne A, van Geuns RJ, de Feyter PJ (2001) Coronary angiography with multi-slice computed tomography. Lancet 357:599–603

    Article  PubMed  CAS  Google Scholar 

  13. Schroeder T, Nadalin S, Stattaus J, Debatin JF, Malago M, Ruehm SG (2002) Potential living liver donors: evaluation with an all-in-one protocol with multi-detector row CT. Radiology 224:586–591

    PubMed  Google Scholar 

  14. Kudo K, Terae S, Katoh C, Oka M, Shiga T, Tamaki N, Miyasaka K (2003) Quantitative cerebral blood flow measurement with dynamic perfusion CT using the vascular-pixel elimination method: comparison with H2(15)O positron emission tomography. AJNR Am J Neuroradiol 24:419–426

    PubMed  Google Scholar 

  15. Philipp MO, Funovics MA, Mann FA, Herneth AM, Fuchsjaeger MH, Grabenwoeger F, Lechner G, Metz VM (2003) Four-channel multidetector CT in facial fractures: do we need 2 × 0.5 mm collimation? AJR Am J Roentgenol 180:1707–1713

    PubMed  Google Scholar 

  16. Jayaraman MV, Mayo-Smith WW, Tung GA, Haas RA, Rogg JM, Mehta NR, Doberstein CE (2004) Detection of intracranial aneurysms: multi-detector row CT angiography compared with DSA. Radiology 230:510–518

    PubMed  Google Scholar 

  17. Sheth S, Scatarige JC, Horton KM, Corl FM, Fishman EK (2001) Current concepts in the diagnosis and management of renal cell carcinoma: role of multidetector CT and three-dimensional CT. Radiographics 21 Spec No:S237–S254

    PubMed  Google Scholar 

  18. Prokesch RW, Chow LC, Beaulieu CF, Nino-Murcia M, Mindelzun RE, Bammer R, Huang J, Jeffrey RB Jr (2002) Local staging of pancreatic carcinoma with multi-detector row CT: use of curved planar reformations initial experience. Radiology 225:759–765

    PubMed  Google Scholar 

  19. Abe T, Izumiyama H, Fujisawa I (2002) Evaluation of pituitary adenomas by multidirectional multislice dynamic CT. Acta Radiol 43:556–559

    Article  PubMed  CAS  Google Scholar 

  20. Weir B (1992) Pituitary tumors and aneurysms: case report and review of the literature. Neurosurgery 30:585–591

    Article  PubMed  CAS  Google Scholar 

  21. Korogi Y, Takahashi M, Sakamoto Y, Shinzato J (1991) Cavernous sinus: correlation between anatomic and dynamic gadolinium-enhanced MR imaging findings. Radiology 180:235–237

    PubMed  CAS  Google Scholar 

  22. Cottier JP, Destrieux C, Brunereau L, Bertrand P, Moreau L, Jan M, Herbreteau D (2000) Cavernous sinus invasion by pituitary adenoma: MR imaging. Radiology 215:463–469

    PubMed  CAS  Google Scholar 

  23. Scotti G, Yu CY, Dillon WP, Norman D, Colombo N, Newton TH, De Groot J, Wilson CB (1988) MR imaging of cavernous sinus involvement by pituitary adenomas. AJR Am J Roentgenol 151:799–806

    PubMed  CAS  Google Scholar 

  24. Knosp E, Steiner E, Kitz K, Matula C (1993) Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery 33:610–617

    Article  PubMed  CAS  Google Scholar 

  25. Destrieux C, Kakou MK, Velut S, Lefrancq T, Jan M (1998) Microanatomy of the hypophyseal fossa boundaries. J Neurosurg 88:743–752

    Article  PubMed  CAS  Google Scholar 

  26. Arafah BM (1986) Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 62:1173–1179

    Article  PubMed  CAS  Google Scholar 

  27. Daniels DL, Herfkins R, Gager WE, Meyer GA, Koehler PR, Williams AL, Haughton VM (1984) Magnetic resonance imaging of the optic nerves and chiasm. Radiology 152:79–83

    PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Miki.

Additional information

Y.M. and M.K. contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, Y., Kanagaki, M., Takahashi, J.A. et al. Evaluation of pituitary macroadenomas with multidetector-row CT (MDCT): comparison with MR imaging. Neuroradiology 49, 327–333 (2007). https://doi.org/10.1007/s00234-006-0194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-006-0194-9

Keywords

Navigation