Skip to main content
Log in

The neural network involved in a bimanual tactile–tactile matching discrimination task: a functional imaging study at 3 T

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The cerebral and cerebellar network involved in a bimanual object recognition was studied in blood oxygenation dependent level functional magnetic resonance imaging (fMRI).

Methods

Nine healthy right-handed volunteers were scanned (1) while performing bilateral finger movements (nondiscrimination motor task), and (2) while performing a bimanual tactile–tactile matching discrimination task using small chess pieces (tactile discrimination task).

Results

Extensive activations were specifically observed in the parietal (SII, superior lateral lobule), insular, prefrontal, cingulate and neocerebellar cortices (HVIII), with a left predominance in motor areas, during the tactile discrimination task in contrast to the findings during the nondiscrimination motor task.

Conclusion

Bimanual tactile–tactile matching discrimination recruits multiple sensorimotor and associative cerebral and neocerebellar networks (including the cerebellar second homunculus, HVIII), comparable to the neural circuits involved in unimanual tactile object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Habas C, Axelrad H, Nguyen TH, Cabanis EA (2004) Specific neocerebellar activation during out-of-phase bimanual movements. Neuroreport 15:595–599

    Article  PubMed  CAS  Google Scholar 

  2. Habas C, Cabanis EA (2006) Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements. Neuroradiology 48:273–279

    Article  PubMed  Google Scholar 

  3. Habas C, Axelrad H, Cabanis EA (2004) The cerebellar second homunculus remains silent during passive bimanual movements. Neuroreport 15:1571–1574

    Article  PubMed  CAS  Google Scholar 

  4. Reed CL, Shoham S, Halgren E (2004) Neural substrates of tactile object recognition: an fMRI study. Hum Brain Mapp 21:236–246

    Article  PubMed  Google Scholar 

  5. Roland PE (1976) Astereognosis. Tactile discrimination after localized hemispheric lesions in man. Arch Neurol 33:543–550

    PubMed  CAS  Google Scholar 

  6. Roland PE (1985) Somatosensory detection in man. Exp Brain Res Suppl 10:93–110

    Google Scholar 

  7. Roland PE (1987) Somatosensory detection in patients with circumscribed lesions of the brain. Exp Brain Res 66:303–317

    Article  PubMed  CAS  Google Scholar 

  8. Roland PE (1987) Somatosensory detection of microgeometry, macrogeometry and kinesthesia after localized lesions of the cerebral hemispheres in man. Brain Res 434:43–94

    PubMed  CAS  Google Scholar 

  9. Pause M, Kunesch E, Binkofski F, Freund HJ (1989) Sensorimotor disturbances in patients with lesions of the parietal cortex. Brain 112:1599–1625

    Article  PubMed  Google Scholar 

  10. Seitz RJ, Roland PE, Bohm C, Greitz T, Stone-Elander S (1991) Somatosensory discrimination of shape: tactile exploration and cerebral activation. Eur J Neurosci 3:481–492

    Article  PubMed  Google Scholar 

  11. Deibert E, Kraut M, Kremen S, Hart J Jr (1999) Neural pathways in tactile object recognition. Neurology 52:1413–1417

    PubMed  CAS  Google Scholar 

  12. Jäncke L, Kleinschmidt A, Mirzazade S, Shah NJ, Freund HJ (2001) The role of inferior parietal cortex in linking the tactile perception and manual construction of object shapes. Cerebral Cortex 11:114–121

    Article  PubMed  Google Scholar 

  13. Reed CL, Klatzky RL, Halgren E (2005) What vs. where in touch: an fMRI study. Neuroimage 25:718–726

    Article  PubMed  Google Scholar 

  14. Van Boven RW, Ingeholm JE, Beauchamp MS, Bikle PC, Ungerleider LG (2005) Tactile form and location processing in the human brain. Proc Natl Acad Sci USA 102:12601–12605

    Article  PubMed  CAS  Google Scholar 

  15. Kaas AL, van Mier H, Goebel R (2006) The neural correlates of human working memory for haptically explored object orientations. Cerebral Cortex. DOI 10.1093/cercor/bhl074

  16. Liu Y, Pu Y, Gao JH, Parsons LM, Xiong J, Liotti M, Bower JM, Fo PT (2000) The human red nucleus and lateral cerebellum in supporting roles for sensory information processing. Hum Brain Mapp 10:147–159

    Article  PubMed  CAS  Google Scholar 

  17. Jueptner M, Jenkins IH, Brooks DJ, Frackowiak RSJ, Passingham RE (1996) The sensory guidance of movements: a comparison of the cerebellum and basal ganglia. Exp Brain Res 112:462–474

    Article  PubMed  CAS  Google Scholar 

  18. Seidler RD, Noll DC, Chintalapati P (2006) Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res 175:544–555

    Article  PubMed  CAS  Google Scholar 

  19. Ito M (1982) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  20. Xu D, Liu T, Ashe J, Bushara KO (2006) Role of the olivo-cerebellar system in timing. J Neurosci 26:5990–5995

    Article  PubMed  CAS  Google Scholar 

  21. Massion J (1967) The mammalian red nucleus. Physiol Rev 47:383–436

    PubMed  CAS  Google Scholar 

  22. Harada T, Saito DN, Kashikura K-I, Sato T, Yonekura Y, Honda M, Sadato N (2004) Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study. J Neurosci 24:7524–7530

    Article  PubMed  CAS  Google Scholar 

  23. Lederman SJ, Klatzky RL (1987) Hand movements: a window into haptic object recognition. Cogn Psychol 19:342–368

    Article  CAS  PubMed  Google Scholar 

  24. Bohlhalter S, Fretz C, Weder B (2002) Hierarchical versus parallel processing in tactile object recognition. A behavioral-neuroanatomical study of aperceptive tactile agnosia. Brain 125:2537–2548

    Article  PubMed  CAS  Google Scholar 

  25. Valenza N, Ptak R, Zimine I, Badan M, Lazeyras F, Schnider A (2001) Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia. Brain 124:2287–2298

    Article  PubMed  CAS  Google Scholar 

  26. O’Sullivan BT, Roland PE, Kawashima R (1994) A PET study of somatosensory discrimination in man. Microgeometry versus macrogeometry. Eur J Neurosci 6:137–148

    Article  PubMed  CAS  Google Scholar 

  27. Hinkley LB, Krubitzer LA, Nagarajan SS, Disbrow EA (2006) Sensorimotor integration in S2, PV, and the parietal rostroventral areas of the human sylvian fissure. J Neurophysiol 97:1288–1297

    Article  PubMed  Google Scholar 

  28. Moore CI, Crosier E, Greve DN, Savoy R, Merzenich MM, Dale AM (2002) Cortical correlates of vibrotactile detection in humans. Cognitive Neuroscience Society, San Francisco

  29. Stoeckel MC, Weder B, Binkofski F, Choi HJ, Amunts K, Pieperhoff P, Shah NJ, Seitz RJ (2004) Left and right superior parietal lobule in tactile object discrimination. Eur J Neurosci 19:1067–1072

    Article  PubMed  CAS  Google Scholar 

  30. Malach R, Reppas JB, Benson RR, Kwong KK, Jiang H, Kennedy WA et al (1995) Object-related activity revealed by functional brain imaging in human occipital cortex. Proc Natl Acad Sci USA 92:8135–8139

    Article  PubMed  CAS  Google Scholar 

  31. Peltier S, Stilla R, Mariola E, LaConte S, Hu X, Satthian K (2007) Activity and effective connectivity of parietal and occipital cortical regions during haptic shape perception. Neuropsychologia 45:476–483

    Article  PubMed  Google Scholar 

  32. Stoeckel MC, Weder B, Binkofski F, Buccino G, Shah NJ, Seitz RJ (2003) A fronto-parietal circuit for tactile object discrimination: an event-related fMRI study. Neuroimage 19:1103–1114

    Article  PubMed  Google Scholar 

  33. Mutschler I, Schulze-Bonhage A, Glauche V, Demandt E, Speck O, Ball T (2007) A rapid sound-action association effect in human insular cortex. Plos One 2:e259

    Article  PubMed  Google Scholar 

  34. Bonda E, Petrides M, Evans A (1996) Neural systems for tactual memories. J Neurophysiol 75:1730–1737

    PubMed  CAS  Google Scholar 

  35. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–749

    Article  PubMed  CAS  Google Scholar 

  36. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    Article  PubMed  CAS  Google Scholar 

  37. Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60

    Article  PubMed  CAS  Google Scholar 

  38. Middleton FA, Strick PL (2000) Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev 31:236–250

    Article  PubMed  CAS  Google Scholar 

  39. Ito M (1993) Movement and thought: identical central mechanisms by the cerebellum. Trends Neurosci 16:447–450

    Article  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Habas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habas, C., Cabanis, E.A. The neural network involved in a bimanual tactile–tactile matching discrimination task: a functional imaging study at 3 T. Neuroradiology 49, 681–688 (2007). https://doi.org/10.1007/s00234-007-0239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0239-8

Keywords

Navigation