Skip to main content
Log in

Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Susceptibility-weighted imaging (SWI) is a novel magnetic resonance (MR) technique that exploits the magnetic susceptibility differences of various tissues, such as blood, iron and calcification. This pictorial review covers many clinical conditions illustrating its usefulness.

Methods

SWI consists of using both magnitude and phase images from a high-resolution, three-dimensional fully velocity-compensated gradient echo sequence. Phase mask is created from the MR phase images, and multiplying these with the magnitude images increase the conspicuity of the smaller veins and other sources of susceptibility effects, which is depicted using minimal intensity projection (minIP).

Results

The phase images are useful in differentiating between diamagnetic and paramagnetic susceptibility effects of calcium and blood, respectively. This unique MR sequence will help in detecting occult low flow vascular lesions, calcification and cerebral microbleed in various pathologic conditions and aids in characterizing tumors and degenerative diseases of the brain. This sequence also can be used to visualize normal brain structures with conspicuity.

Conclusion

Susceptibility-weighted imaging is useful in differentiating and characterizing diverse brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain. MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277

    PubMed  CAS  Google Scholar 

  2. Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467

    Article  PubMed  CAS  Google Scholar 

  3. Seghal V, Delproposto Z, Haacke EM et al (2005) Clinical application s of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22:439–450

    Article  Google Scholar 

  4. Liang L, Korogi Y, Sugahara T, Shigematsu Y, Okuda T, Ikushima I, Takahashi M (1999) Detection of intracranial hemorrhage with susceptibility-weighted MR sequences. AJNR Am J Neuroradiol 20:1527–1534

    PubMed  CAS  Google Scholar 

  5. Wang Y, Yu Y, Li D et al (2000) Artery and vein separation using susceptibility-dependent phase in contrast enhanced MRA. J Magn Reson Imaging 12:661–670

    Article  PubMed  CAS  Google Scholar 

  6. Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR et al (2005) Magnetic susceptibility-weighted MR phase imaging of the human brain. AJNR Am J Neroradiol 26:736–742

    Google Scholar 

  7. Yamada N, Imakita S, Sakuma T et al (1996) Intracranial calcification on gradient -echo phase image:Depiction of Diamagnetic susceptibility. Radiology 198:171–178

    Google Scholar 

  8. Gupta RK, Rao SB, Rajan J et al (2001) Differentiation of calcification from chronic hemorrhage with corrected gradient echo phase imaging. J Comput Assist Tomogr 25:698–704

    Article  PubMed  CAS  Google Scholar 

  9. Yamada N, Imakita S, Sakuma T et al (1990) Evaluation of the susceptibility effect on the phase images of a simple gradient echo. Radiology 175:561–565

    PubMed  CAS  Google Scholar 

  10. Deistung A, Mentzel HJ, Rauscher A, Witoszynskyj S, Kaiser WA, Reichenbach JR (2006) Demonstration of paramagnetic and diamagnetic cerebral lesions by using susceptibility weighted phase imaging (SWI). Z Med Phys 16:261–267

    PubMed  Google Scholar 

  11. Dumoulin CL, Hart HJ (1986) Magnetic resonance angiography. Radiology 161:717–720

    PubMed  CAS  Google Scholar 

  12. Thulborn KR, Waterton JC, Matthews PM et al (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    PubMed  CAS  Google Scholar 

  13. Li D, Waight DJ, Wang Y (1998) In vivo correlation between blood T2* and oxygen saturation. J Magn Reson Imaging 8:1236–1239

    Article  PubMed  CAS  Google Scholar 

  14. Gomori JM, Grossman RI, Yu-Ip C et al (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11:684–690

    Article  PubMed  CAS  Google Scholar 

  15. Haacke EM, Satin W (1993) Fast imaging and vessel contrast. In: Potchen EJ, Haacke EM, Siebert JE, Gottaschalk A (eds) Magneticresonanceangiography. Mosby, St. Louis, pp 46–51

    Google Scholar 

  16. Reichenbach JR, Venkatesan R, Yablonsky DA et al (1997) Theory and application of static field inhomogenity effects inn gradient echo imaging. J Magn Reson Imaging 7:266–279

    Article  PubMed  CAS  Google Scholar 

  17. Lee BCP, Vo KD, Kido DK et al (1999) MR high resolution blood oxygenation level dependent venography of occult (low-flow) vascular lesions. AJNR Am J Neuroradiol 20:1239–1242

    PubMed  CAS  Google Scholar 

  18. Reichenbach JR, Jonetz-Mentzel L, Fitzek C et al (2001) High resolution blood oxygen-level dependent MR venography. Neuroradiology 43:364–369

    Article  PubMed  CAS  Google Scholar 

  19. Essig M, Reichenbach JR, Schad JR et al (1999) High resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging 17:1417–1425

    Article  PubMed  CAS  Google Scholar 

  20. Lin W, Mukherjee P, An H et al (1999) Improving high resolution MR bold venographic imaging using a T1 reducing contrast agent. J Magn Reson Imaging 10:118–123

    Article  PubMed  CAS  Google Scholar 

  21. Dean Bl, Drayer BP, Bird CR, Flora RA, Hodak JA, Coons SW, Carey RG (1990) Gliomas:classification with MR imaging. Radiology 174:411–415

  22. Ding B, Ling HW, Chen KM, Jiang H, Zhu YB (2006) Comparison of cerebral blood volume and permeability in preoperative grading of intracranial glioma using CT perfusion imaging. Neuroradiology 48:773–781

    Article  PubMed  Google Scholar 

  23. Recht L, Torres CO, Smith TW et al (1990) Transferrin receptor in normal and neoplastic brain tissue :implications for brain tumor immunotherapy. J Neurosurg 72:941–945

    PubMed  CAS  Google Scholar 

  24. Bagley L, Grossman RI, Judy KD et al (1997) Gliomas: correlation of magnetic susceptibility artifact with histologic grade. Radiology 202:511–516

    PubMed  CAS  Google Scholar 

  25. Seghal V, Delproposto Z, Haddar D et al (2006) Susceptibility-weighted imaging to visualise blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24:41–51

    Article  Google Scholar 

  26. Christoforidis GA, Kangarlu A, Abduljalil AM et al (2004) Susceptibility-based imaging of glioblastoma Microvascularity at 8T.: correlation of MR imaging and postmortem pathology. AJNR Am J Neuroradiol 25:756–760

    PubMed  Google Scholar 

  27. Krishnamoorthy T, Radhakrishnan VV, Thomas B et al (2006) Microhemorrhages in vestibular schwannomas: prospective study with T2* weighted gradient-echo sequence. In: Proc Am Soc Neurorad (ASNR). San Diego, USA

  28. Wardlaw JM, Statham PF (2000) How often is haemosiderin not visible on routine MRI following traumatic intracerebral haemorrhage? Neuroradiology 42:81–84

    Article  PubMed  CAS  Google Scholar 

  29. Gentry LR, Godersky JC, Thompsonn B (1988) MR imaging of head trauma:review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol 150:663–672

    PubMed  CAS  Google Scholar 

  30. Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530

    Article  PubMed  CAS  Google Scholar 

  31. Orrison WW, Gentry LR, Stimac GK et al (1994) Blinded comparison of cranial CT and MR in closed head injury evaluation. AJNR Am J Neuroradiology 15:351–356

    CAS  Google Scholar 

  32. Paterakis K, Karantanas AH, Komnos A et al (2000) Outcome of patients with diffuse axonal injury: the significance and prognostic value of MRI in the acute phase. J Trauma 49:1071–1075

    Article  PubMed  CAS  Google Scholar 

  33. Atlas SW, Mark AS, Grossman RI et al (1988) Intracranial Hemorrhage: gradient echo MR imaging at 1.5 T.-comparison with spin echo imaging and clinical applications. Radiology 168:803–807

    PubMed  CAS  Google Scholar 

  34. Tong KA, Ashwal S, Holshouer B et al (2003) Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 227:332–339

    Article  PubMed  Google Scholar 

  35. Wycliffe ND, Chose J, Holshouser B et al (2004) Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography: a retrospective study. J Magn Reson Imaging 20:372–377

    Article  PubMed  Google Scholar 

  36. Mammen EF (1992) Pathogenesis of venous thrombosis. Chest 102:640s–644s

    Article  PubMed  CAS  Google Scholar 

  37. Kidwell CS, Saver JL, Villablanca JP et al (2002) Magnetic resonance imaging detection of microbleeds before thrombolysis:an emerging application. Stroke 33:95–98

    Article  PubMed  Google Scholar 

  38. Greenberg SM, O’Donnel HC, Schaefer PW et al (1999) MRI detection of new hemorrhages:potential marker of progression in cerebral amyloid angiopathy. Neurology 53:1135–1138

    PubMed  CAS  Google Scholar 

  39. Lesnik OAJ, Van Den Boom R, Van buchem A et al (2001) Cerebral microbleeds in CADASIL. Neurology 57:1066–1070

    Google Scholar 

  40. Martin D, Makus H, Jurgen H et al (2002) Cerebral microbleeds in CADASIL: a gradient echo MRI and autopsy study. Stroke 33:67–71

    Article  Google Scholar 

  41. Campi A, Benndorf G, Filippi M, Reganati P, Martinelli V, Terreni MR (2001) Primary angiitis of the central nervous system: serial MRI of brain and spinal cord. Neuroradiology 43:599–607

    Article  PubMed  CAS  Google Scholar 

  42. Gerrnberg SM, Finklestein SP, Schaefer et al (1996) Petechial hemorrhages accompanying lobar hemorrhage:detection by gradient echo MRI. Neurology 46:1751–1754

    Google Scholar 

  43. Bartzokis G, Tishler TA (2000) MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimers and huntingtons disease. Cell Mol Biol 46:821–833

    Google Scholar 

  44. Bartzokis G, Cummins J, Markham Ch et al (1999) MRI evaluation of brain iron in earlier and later onset Parkinsons disease and normal subjects. Magn Reson Imaging 17:213–222

    Article  PubMed  CAS  Google Scholar 

  45. Hecht MJ, Fellner C, Schmid A, Neundorfer B, Fellner FA (2005) Cortical T2 signal shortening in amyotrophic lateral sclerosis is not due to iron deposits. Neuroradiology 47:805–808

    Article  PubMed  CAS  Google Scholar 

  46. Vymazal J, Righini A, Brooks RA et al (1999) T1 and T2 in the brain of healthy subjects,patients with Parkinson disease and patients with multiple system atrophy: relation to iron content. Radiology 211:489–495

    PubMed  CAS  Google Scholar 

  47. Ogg RJ, Langston JW, Haacke EM et al (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17:1141–1148

    Article  PubMed  CAS  Google Scholar 

  48. Haacke EM, Ayaz M, Khan A, Manova ES, Krishnamurthy B, Gollapalli L, Ciulla C, Kim I, Petersen F, Kirsch W (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264

    Article  PubMed  Google Scholar 

  49. Tan IL, van Schijndel RA, Pouwels PJ, van Walderveen MA, Reichenbach JR, Manoliu RA, Barkhof F (2000) MR venography of multiple sclerosis. AJNR Am J Neuroradiol 21:1039–1042

    PubMed  CAS  Google Scholar 

  50. Reichenbach JR, Barth M, Haacke M et al (2000) High-resolution MR venography at 3.0 tesla. J Comput Assist Tomogr 24:949–957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Siemens Medical Systems for providing with the SWI sequence and the post-processing tools. We also thank the Director, SCTIMST, for the permission to publish this paper.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bejoy Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, B., Somasundaram, S., Thamburaj, K. et al. Clinical applications of susceptibility weighted MR imaging of the brain – a pictorial review. Neuroradiology 50, 105–116 (2008). https://doi.org/10.1007/s00234-007-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-007-0316-z

Keywords

Navigation