Skip to main content

Advertisement

Log in

Early anisotropy changes in the corpus callosum of patients with optic neuritis

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 September 2008

Abstract

Introduction

Optic neuritis (ON) and any other early manifestation of multiple sclerosis (MS) are referred to as clinically isolated syndrome (CIS) as long as MS is suspected. In this prospective study we aimed to determine whether diffusion tensor imaging (DTI) could quantify structural changes in patients with early MS.

Methods

A total of 24 patients and 15 control subjects were prospectively followed by clinical examinations and MRI. the main inclusion criterion was presentation with ON. Patients underwent serial MRI scans: MRI1 (baseline, n=24), MRI2 (mean 6.6 months, n=24), MRI3 (mean 13.0 months, n=14), MRI4 (mean 39.4 months, n=5). Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) maps were derived from DTI. Four regions of interest (ROIs) were defined in normal-appearing white matter (NAWM).

Results

In the temporal course FA decreased in the genu of the callosal body (GCC) from MRI1 to MRI4 (P=0.005) and in the splenium of the callosal body (SCC) (P=0.006). Patients already had lower FA values in the SCC (P<0.01) on MRI1 compared with the controls. Patients had lower FA values in the GCC (P<0.01) starting from MRI2. Patients with definite MS on follow-up (n=9) showed a correlation between FA in the SCC and time (r=−0.40, P=0.004), whereas patients without progression did not.

Conclusions

Our findings suggest that the corpus callosum is an early site for development of anisotropy changes in MS patients with ON. There seems to be a primary FA decrease in all patients with ON that only deteriorates in the group developing definite MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller D, Barkhof F, Montalban X, Thompson A, Filippi M (2005) Clinically isolated syndromes suggestive of multiple sclerosis, part 2: non-conventional MRI, recovery processes, and management. Lancet Neurol 4:341–348

    Article  PubMed  CAS  Google Scholar 

  2. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH (2002) A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 346:158–164

    Article  PubMed  Google Scholar 

  3. Miller D, Barkhof F, Montalban X, Thompson A, Filippi M (2005) Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol 4:281–288

    Article  PubMed  Google Scholar 

  4. Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, Comi G, Adèr HJ, Losseff N, Valk J (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120(Pt 11):2059–2069

    Article  PubMed  Google Scholar 

  5. Cañellas AR, Gols AR, Izquierdo JR, Subirana MT, Gairin XM (2007) Idiopathic inflammatory-demyelinating diseases of the central nervous system. Neuroradiology 49:393–409

    Article  PubMed  Google Scholar 

  6. Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15:239–245

    Article  PubMed  Google Scholar 

  7. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  8. Wattjes MP, Harzheim M, Lutterbey GG, Bogdanow M, Schmidt S, Schild HH, Träber F (2008) Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 50:123–129

    Article  PubMed  Google Scholar 

  9. Filippi M, Rocca MA (2007) Magnetic resonance imaging techniques to define and monitor tissue damage and repair in multiple sclerosis. J Neurol 254 [Suppl 1]:155–162

    Google Scholar 

  10. Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    Article  PubMed  CAS  Google Scholar 

  11. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM (2000) Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 123(Pt 9):1845–1849

    Article  PubMed  Google Scholar 

  12. Ge Y, Law M, Johnson G, Herbert J, Babb JS, Mannon LJ, Grossman RI (2004) Preferential occult injury of corpus callosum in multiple sclerosis measured by diffusion tensor imaging. J Magn Reson Imaging 20:1–7

    Article  PubMed  Google Scholar 

  13. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  14. Ding XQ, Kucinski T, Wittkugel O, Goebell E, Grzyska U, Görg M, Kohlschütter A, Zeumer H (2004) Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 39:740–746

    Article  PubMed  Google Scholar 

  15. Caramia F, Pantano P, Di Legge S, Piattella MC, Lenzi D, Paolillo A, Nucciarelli W, Lenzi GL, Bozzao L, Pozzilli C (2002) A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Reson Imaging 20:383–388

    Article  PubMed  Google Scholar 

  16. Gallo A, Rovaris M, Riva R, Ghezzi A, Benedetti B, Martinelli V, Falini A, Comi G, Filippi M (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62:803–808

    Article  PubMed  Google Scholar 

  17. Yu CS, Lin FC, Li KC, Jiang TZ, Zhu CZ, Qin W, Sun H, Chan P (2006) Diffusion tensor imaging in the assessment of normal-appearing brain tissue damage in relapsing neuromyelitis optica. AJNR Am J Neuroradiol 27:1009–1015

    PubMed  CAS  Google Scholar 

  18. Yu CS, Zhu CZ, Li KC, Xuan Y, Qin W, Sun H, Chan P (2007) Relapsing neuromyelitis optica and relapsing-remitting multiple sclerosis: differentiation at diffusion-tensor MR imaging of corpus callosum. Radiology 244:249–256

    Article  PubMed  Google Scholar 

  19. Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    Article  PubMed  CAS  Google Scholar 

  20. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219

    Article  PubMed  CAS  Google Scholar 

  21. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399

    Article  PubMed  Google Scholar 

  22. Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  PubMed  CAS  Google Scholar 

  23. Filippi M, Rocca MA, Falini A, Caputo D, Ghezzi A, Colombo B, Scotti G, Comi G (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15:537–546

    Article  PubMed  CAS  Google Scholar 

  24. Cercignani M, Bozzali M, Iannucci G, Comi G, Filippi M (2002) Intra-voxel and inter-voxel coherence in patients with multiple sclerosis assessed using diffusion tensor MRI. J Neurol 249:875–883

    Article  PubMed  CAS  Google Scholar 

  25. Rovaris M, Iannucci G, Falautano M, Possa F, Martinelli V, Comi G, Filippi M (2002) Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 195:27–30

    Article  Google Scholar 

  26. Tortorella C, Viti B, Bozzali M, Sormani MP, Rizzo G, Gilardi MF, Comi G, Filippi M (2000) A magnetization transfer histogram study of normal-appearing brain tissue in MS. Neurology 54:186–193

    Article  PubMed  CAS  Google Scholar 

  27. Pagani E, Filippi M, Rocca MA, Horsfield MA (2005) A method for obtaining tract-specific diffusion tensor MRI measurements in the presence of disease: application to patients with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 26:258–265

    Article  PubMed  CAS  Google Scholar 

  28. Griffin CM, Chard DT, Ciccarelli O, Kapoor B, Barker GJ, Thompson AI, Miller DH (2001) Diffusion tensor imaging in early relapsing-remitting multiple sclerosis. Mult Scler 7:290–297

    PubMed  CAS  Google Scholar 

  29. Chepuri NB, Yen YF, Burdette JH, Li H, Moody DM, Maldjian JA (2002) Diffusion anisotropy in the corpus callosum. AJNR Am J Neuroradiol 23:803–808

    PubMed  Google Scholar 

  30. Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112(Pt 3):799–835

    Google Scholar 

  31. Abe O, Aoki S, Hayashi N, Yamada H, Kunimatsu A, Mori H, Yoshikawa T, Okubo T, Ohtomo K (2002) Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol Aging 23:433–441

    Article  PubMed  Google Scholar 

  32. Pelletier J, Habib M, Lyon-Caen O, Salamon G, Poncet M, Khalil R (1993) Functional and magnetic resonance imaging correlates of callosal involvement in multiple sclerosis. Arch Neurol 50:1077–1082

    PubMed  CAS  Google Scholar 

  33. Ceccarelli A, Rocca MA, Falini A, Tortorella P, Pagani E, Rodegher M, Comi G, Scotti G, Filippi M (2007) Normal-appearing white and grey matter damage in MS: a volumetric and diffusion tensor MRI study at 3.0 Tesla. J Neurol 254:513–518

    Article  PubMed  Google Scholar 

  34. Levin HS, Benavidez DA, Verger-Maestre K, Perachio N, Song J, Mendelsohn DB, Fletcher JM (2000) Reduction of corpus callosum growth after severe traumatic brain injury in children. Neurology 54:647–653

    PubMed  CAS  Google Scholar 

  35. Foong J, Maier M, Clark CA, Barker GJ, Miller DH, Ron MA (2000) Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatr 68:242–244

    Article  PubMed  CAS  Google Scholar 

  36. Gallucci M, Limbucci N, Paonessa A, Caranci F (2007) Reversible focal splenial lesions. Neuroradiology 49:541–544

    Article  PubMed  Google Scholar 

  37. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 206:165–171

    Article  PubMed  CAS  Google Scholar 

  38. Medana IM, Esiri MM (2003) Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126:515–530

    Article  PubMed  CAS  Google Scholar 

  39. Ciccarelli O, Werring DJ, Barker GJ, Griffin CM, Wheeler-Kingshott CA, Miller DH, Thompson AJ (2003) A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging – evidence of Wallerian degeneration. J Neurol 250:287–292

    Article  PubMed  Google Scholar 

  40. Simon JH, Zhang S, Laidlaw DH, Miller DE, Brown M, Corboy J, Bennett J (2006) Identification of fibers at risk for degeneration by diffusion tractography in patients at high risk for MS after a clinically isolated syndrome. J Magn Reson Imaging 24:983–988

    Article  PubMed  Google Scholar 

  41. Ranjeva JP, Pelletier J, Confort-Gouny S, Ibarrola D, Audoin B, Le Fur Y, Viout P, Chérif AA, Cozzone PJ (2003) MRI/MRS of corpus callosum in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 9:554–565

    Article  PubMed  CAS  Google Scholar 

  42. Hasan KM, Gupta RK, Santos RM, Wolinsky JS, Narayana PA (2005) Diffusion tensor fractional anisotropy of the normal-appearing seven segments of the corpus callosum in healthy adults and relapsing-remitting multiple sclerosis patients. J Magn Reson Imaging 21:735–743

    Article  PubMed  Google Scholar 

  43. Coombs BD, Best A, Brown MS, Miller DE, Corboy J, Baier M, Simon JH (2004) Multiple sclerosis pathology in the normal and abnormal appearing white matter of the corpus callosum by diffusion tensor imaging. Mult Scler 10:392397

    Article  PubMed  Google Scholar 

  44. Bammer R, Augustin M, Strasser-Fuchs S, Seifert T, Kapeller P, Stollberger R, Ebner F, Hartung HP, Fazekas F (2000) Magnetic resonance diffusion tensor imaging for characterizing diffuse and focal white matter abnormalities in multiple sclerosis. Magn Reson Med 44:583–591

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fiehler.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00234-008-0452-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bester, M., Heesen, C., Schippling, S. et al. Early anisotropy changes in the corpus callosum of patients with optic neuritis. Neuroradiology 50, 549–557 (2008). https://doi.org/10.1007/s00234-008-0377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0377-7

Keywords

Navigation