Skip to main content

Advertisement

Log in

Prognostic value of choline and creatine in WHO grade II gliomas

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of this study was to evaluate whether proton magnetic resonance spectroscopy (1H-MRS) predicts survival time, tumor progression, and malignant transformation in patients with WHO grade II gliomas.

Materials and methods

1H-MRS and MR imaging (MRI) were performed before surgery in 45 patients with histologically proven WHO grade II gliomas. Metabolite concentrations of choline-containing compounds (Cho) and creatine/phosphocreatine (tCr) were normalized to contralateral brain tissue. Spectroscopic data as well as the extent of tumor resection, contrast enhancement, size and histopatholocical type of the tumor, age, sex, and first neurological symptoms of the patients were analyzed for survival, tumor progression, and malignant transformation for a follow-up period of 1 to 5 years.

Results

The normalized tCr of WHO grade II gliomas was a significant predictor for tumor progression (p = 0.011) and for malignant tumor transformation (p = 0.016). Further, contrast enhancement of the tumor (p = 0.014) at the time of diagnosis was significant for malignant tumor transformation and extent of tumor resection for the tumor progression (p = 0.007). All other parameters failed to predict any of the three endpoints.

Conclusion

Normalized values of tCr in WHO grade II gliomas may have prognostic implications for this group of gliomas. As a rule of the thumb, low-grade gliomas with decreased tCr (relative tCr values below 1.0) may show longer progression-free times and later malignant transformation than low-grade gliomas with regular or increased tCr values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karim AB, Afra D, Cornu P, Bleehan N, Schraub S, De Witte O, Darcel F, Stenning S, Pierart M, Van Glabbeke M (2002) Randomized trial on the efficacy of radiotherapy for cerebral low-grade glioma in the adult: European Organization for Research and Treatment of Cancer Study 22845 with the Medical Research Council study BRO4: an interim analysis. Int J Radiat Oncol Biol Phys 52:316–324

    PubMed  Google Scholar 

  2. Shimizu H, Kumabe T, Tominaga T, Kayama T, Hara K, Ono Y, Sato K, Arai N, Fujiwara S, Yoshimoto T (1996) Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. AJNR Am J Neuroradiol 17:737–747

    PubMed  CAS  Google Scholar 

  3. Kuznetsov YE, Caramanos Z, Antel SB, Preul MC, Leblanc R, Villemure JG, Pokrupa R, Olivier A, Sadikot A, Arnold DL (2003) Proton magnetic resonance spectroscopic imaging can predict length of survival in patients with supratentorial gliomas. Neurosurgery 53:565–574

    Article  PubMed  Google Scholar 

  4. Reijneveld JC, van der Grond J, Ramos LM, Bromberg JE, Taphoorn M (2005) Proton MRS imaging in the follow-up of patients with suspected low-grade gliomas. Neuroradiology 47:887–891

    Article  PubMed  CAS  Google Scholar 

  5. Tedeschi G, Lundbom N, Raman R, Bonavita S, Duyn JH, Alger JR, Di Chiro G (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524

    PubMed  CAS  Google Scholar 

  6. Pignatti F, van den Bent M, Curran D, Debruyne C, Sylvester R, Therasse P, Afra D, Cornu P, Bolla M, Vecht C, Karim AB, European Organization for Research and Treatment of Cancer Brain Tumor Cooperative Group; European Organization for Research and Treatment of Cancer Brain Tumor Cooperative Group and Cancer Radiotherapy Cooperative Group (2002). Prognostic factors for survival in adult patients with cerebral low-grade glioma. J Clin Oncol 20:2076–2084

    Article  PubMed  Google Scholar 

  7. Murphy PS, Leach MO, Rowland IJ (1999) Signal modulation in (1)H magnetic resonance spectroscopy using contrast agents: proton relaxivities of choline, creatine, and N-acetylaspartate. Magn Reson Med 42:1155–1188

    Article  PubMed  CAS  Google Scholar 

  8. Hattingen E, Raab P, Franz K, Zanella FE, Lanfermann H, Pilatus U (2008) Myo-inositol: a marker of reactive astrogliosis in glial tumors. NMR Biomed 21:233–241

    Article  PubMed  CAS  Google Scholar 

  9. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  PubMed  CAS  Google Scholar 

  10. Michaelis T, Merboldt K, Bruhn H, Hänicke W, Frahm J (1993) Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 187:219–227

    PubMed  CAS  Google Scholar 

  11. Li BS, Wang H, Gonen O (2003) Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magn Reson Imaging. 21:923–928

    Article  PubMed  CAS  Google Scholar 

  12. Li X, Lu Y, Pirzkall A, McKnight T, Nelson SJ (2002) Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 16:229–237

    Article  PubMed  Google Scholar 

  13. Galanaud D, Chinot O, Nicoli F, Confort-Gouny S, Le Fur Y, Barrie-Attarian M, Ranjeva JP, Fuentès S, Viout P, Figarella-Branger D, Cozzone PJ (2003) Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J Neurosurg 98:269–276

    PubMed  Google Scholar 

  14. Panigrahy A, Krieger MD, Gonzalez-Gomez I, Liu X, McComb JG, Finlay JL, Nelson MD Jr, Gilles FH, Blüml S (2006) Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 27:560–572

    PubMed  CAS  Google Scholar 

  15. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989

    PubMed  CAS  Google Scholar 

  16. Dringen R, Verleysdonk S, Hamprecht B, Willker W, Leibfritz D, Brand A (1998) Metabolism of glycine in primary astroglial cells: synthesis of creatine, serine, and glutathione. J Neurochem 70:835–840

    Article  PubMed  CAS  Google Scholar 

  17. Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1994) Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35:606–613

    Article  PubMed  CAS  Google Scholar 

  18. Gillies RJ, Barry JA, Ross BD (1994) In vitro and in vivo 13C and 31P NMR analyses of phosphocholine metabolism in rat glioma cells. Magn Reson Med 32:310–308

    Article  PubMed  CAS  Google Scholar 

  19. Shimizu H, Kumabe T, Shirane R, Yoshimoto T (2000) Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 21:659–665

    PubMed  CAS  Google Scholar 

  20. Herminghaus S, Pilatus U, Moller-Hartmann W, Raab P, Lanfermann H, Schlote W, Zanella FE (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385–392

    Article  PubMed  CAS  Google Scholar 

  21. Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM (2001) Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61:3599–3603

    PubMed  CAS  Google Scholar 

  22. Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, McBride D, Jenden DJ (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58:1929–1935

    Article  PubMed  CAS  Google Scholar 

  23. Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, Rubino L, Becker DP, Vinters HV, Alger JR (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226

    Article  PubMed  CAS  Google Scholar 

  24. Zhang K, Li C, Liu Y, Li L, Ma X, Meng X, Feng D (2007) Evaluation of invasiveness of astrocytoma using 1H-magnetic resonance spectroscopy: correlation with expression of matrix metalloproteinase-2. Neuroradiology 49:913–919

    Article  PubMed  Google Scholar 

  25. Di Costanzo A, Scarabino T, Trojsi F, Giannatempo GM, Popolizio T, Catapano D, Bonavita S, Maggialetti N, Tosetti M, Salvolini U, d’Angelo VA, Tedeschi G (2006) Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy. Neuroradiology 48:622–631

    Article  PubMed  Google Scholar 

  26. Möller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U, Zanella FE (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    Article  PubMed  Google Scholar 

  27. Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR 4th, Fitzek MM, Chiocca EA, Rabinov JD, Csavoy AN, Rosen BR, Hochberg FH, Schaefer PW, Gonzalez RG (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  28. White ML, Zhang Y, Kirby P, Ryken TC (2005) Can tumor contrast enhancement be used as a criterion for differentiating tumor grades of oligodendrogliomas. AJNR Am J Neuroradiol 26:784–790

    PubMed  Google Scholar 

  29. Shaw E, Arusell R, Scheithauer B, O'Fallon J, O'Neill B, Dinapoli R, Nelson D, Earle J, Jones C, Cascino T, Nichols D, Ivnik R, Hellman R, Curran W, Abrams R (2002) Prospective randomized trial of low- versus high-dose radiation therapy in adults with supratentorial low-grade glioma: initial report of a North Central Cancer Treatment Group/Radiation Therapy Oncology Group/Eastern Cooperative Oncology Group study. J Clin Oncol 20:2267–2276

    Article  PubMed  CAS  Google Scholar 

  30. Tofts PS, Benton CE, Weil RS, Tozer DJ, Altmann DR, Jäger HR, Waldman AD, Rees JH (2007) Quantitative analysis of whole-tumor Gd enhancement histograms predicts malignant transformation in low-grade gliomas. J Magn Reson Imaging 25:208–214

    Article  PubMed  Google Scholar 

  31. Karim AB, Maat B, Hatlevoll R, Menten J, Rutten EH, Thomas DG, Mascarenhas F, Horiot JC, Parvinen LM, van Reijn M, Jager JJ, Fabrini MG, van Alphen AM, Hamers HP, Gaspar L, Noordman E, Pierart M, van Glabbeke M (1996) A randomized trial on dose-response in radiation therapy of low-grade cerebral glioma: European Organization for Research and Treatment of Cancer (EORTC) Study 22844. Int J Radiat Oncol Biol Phys 36:549–556

    PubMed  CAS  Google Scholar 

  32. Lote K, Egeland T, Hager B, Stenwig B, Skullerud K, Berg-Johnsen J, Storm-Mathisen I, Hirschberg H (1997) Survival, prognostic factors, and therapeutic efficacy in low-grade glioma: a retrospective study in 379 patients. J Clin Oncol 15:3129–3140

    PubMed  CAS  Google Scholar 

  33. Scerrati M, Roselli R, Iacoangeli M, Pompucci A, Rossi GF (1996) Prognostic factors in low grade (WHO grade II) gliomas of the cerebral hemispheres: the role of surgery. J Neurol Neurosurg Psychiatry 61:291–296

    Article  PubMed  CAS  Google Scholar 

  34. Berger MS, Deliganis AV, Dobbins J, Keles GE (1994) The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 74:1784–1791

    Article  PubMed  CAS  Google Scholar 

  35. Eyre HJ, Crowley JJ, Townsend JJ, Eltringham JR, Morantz RA, Schulman SF, Quagliana JM, al-Sarraf M (1993) A randomized trial of radiotherapy versus radiotherapy plus CCNU for incompletely resected low-grade gliomas: a Southwest Oncology Group study. J Neurosurg 78:909–914

    PubMed  CAS  Google Scholar 

  36. Soffietti R, Chio A, Giordana MT, Vasario E, Schiffer D (1989) Prognostic factors in well-differentiated cerebral astrocytomas in the adult. Neurosurgery 24:686–692

    Article  PubMed  CAS  Google Scholar 

  37. Van Veelen ML, Avezaat CJ, Kros JM, van Putten W, Kros JM (1998) Supratentorial low grade astrocytoma: prognostic factors, dedifferentiation, and the issue of early versus late surgery. J Neurol Neurosurg Psychiatry 64:581–587

    PubMed  Google Scholar 

  38. Shaw EG, Scheithauer BW, O'Fallon JR (1997) Supratentorial gliomas: a comparative study by grade and histologic type. J Neurooncol 31:273–278

    Article  PubMed  CAS  Google Scholar 

  39. Okamoto Y, Di Patre PL, Burkhard C, Horstmann S, Jourde B, Fahey M, Schüler D, Probst-Hensch NM, Yasargil MG, Yonekawa Y, Lütolf UM, Kleihues P, Ohgaki H (2004) Population-based study on incidence, survival rates, and genetic alterations of low-grade diffuse astrocytomas and oligodendrogliomas. Acta Neuropathol 108:49–56

    Article  PubMed  Google Scholar 

  40. Van den Bent MJ, Afra D, de Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, Malmström PO, Collette L, Piérart M, Mirimanoff R, Karim AB, EORTC Radiotherapy and Brain Tumor Groups and the UK Medical Research Council (2005) Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytomas and oligodendroglioma in adults: the EORTC 22845 randomised trial. Lancet 366:985–990

    Article  PubMed  Google Scholar 

  41. Wiedermann D, Schuff N, Matson GB, Soher BJ, Du AT, Maudsley AA, Weiner MW (2001) Short echo time multislice proton magnetic resonance spectroscopic imaging in human brain: metabolite distributions and reliability. Magn Reson Imaging 19:1073–1080

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Hattingen.

Additional information

This study was supported by the Federal Ministry of Education and Research (Brain Imaging Center Frankfurt, DLR 01GO0203) and the German Research Foundation (ZA 233/1-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattingen, E., Raab, P., Franz, K. et al. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 50, 759–767 (2008). https://doi.org/10.1007/s00234-008-0409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0409-3

Keywords

Navigation