Skip to main content
Log in

MRI of the alar and transverse ligaments in whiplash-associated disorders (WAD) grades 1–2: high-signal changes by age, gender, event and time since trauma

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

This study describes the prevalence of high-signal changes at magnetic resonance imaging (MRI) of the alar and transverse ligaments in whiplash-associated disorders (WAD) grades 1–2 in relation to age, gender, spinal degeneration, type of trauma event and time since trauma.

Materials and methods

In 1,266 consecutive WAD1–2 patients (779 women, 487 men; mean age 42 years) referred from clinicians, high-signal changes in the alar and transverse ligaments at high-resolution proton-weighted MRI were prospectively graded 0–3 based on a previously reported, reliable grading system. Type of event according to The International Statistical Classification of Diseases and Related Health Problems and time of trauma were obtained from referral letters.

Results

MRI showed grades 2–3 alar ligament changes in 449 (35.5%; 95% confidence interval (CI), 32.8 to 38.1%) and grades 2–3 transverse ligament changes in 311 (24.6%; 95% CI, 22.2% to 26.9%) of the 1,266 patients. Grades 2–3 changes were more common in men than women, odds ratio 1.9 (95% CI, 1.5 to 2.5) for alar and 1.5 (95% CI, 1.1 to 2.0) for transverse ligament changes. High-signal changes were not related to age, spinal degeneration, type of trauma event or time since trauma (median 5 years). Unilateral changes were more often left- than right-sided.

Conclusions

High-signal changes of the alar and transverse ligaments are common in WAD1-2 and unlikely to represent age-dependent degeneration. Their male and left-side preponderance cannot be explained by variation in ligament stretching or image artefacts. Further studies are needed to clarify whether such changes are caused by trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dvorak J, Panjabi MM (1987) Functional anatomy of the alar ligaments. Spine 12:183–189

    Article  PubMed  CAS  Google Scholar 

  2. Dvorak J, Schneider E, Saldinger P et al (1988) Biomechanics of the craniocervical region: the alar and transverse ligaments. J Orthop Res 6:452–461

    Article  PubMed  CAS  Google Scholar 

  3. Heller JG, Amrani J, Hutton WC (1993) Transverse ligament failure: a biomechanical study. J Spinal Disord 6:162–165

    PubMed  CAS  Google Scholar 

  4. Panjabi M, Dvorak J, Crisco J III et al (1991) Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transections. J Spinal Disord 4:157–167

    Article  PubMed  CAS  Google Scholar 

  5. Saldinger P, Dvorak J, Rahn BA et al (1990) Histology of the alar and transverse ligaments. Spine 15:257–261

    Article  PubMed  CAS  Google Scholar 

  6. Adams VI (1993) Neck injuries: III. Ligamentous injuries of the craniocervical articulation without occipito-atlantal or atlanto-axial facet dislocation. A pathologic study of 21 traffic fatalities. J Forensic Sci 38:1097–1104

    PubMed  CAS  Google Scholar 

  7. Dickman CA, Greene KA, Sonntag VK (1996) Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery 38:44–50

    Article  PubMed  CAS  Google Scholar 

  8. Fielding JW, Cochran GB, Lawsing JF III et al (1974) Tears of the transverse ligament of the atlas. A clinical and biomechanical study. J Bone Joint Surg Am 56:1683–1691

    PubMed  CAS  Google Scholar 

  9. Saternus KS, Thrun C (1987) Traumatology of the alar ligaments. Aktuelle Traumatol 17:214–218

    PubMed  CAS  Google Scholar 

  10. Krakenes J, Kaale BR (2006) Magnetic resonance imaging assessment of craniovertebral ligaments and membranes after whiplash trauma. Spine 31:2820–2826

    Article  PubMed  Google Scholar 

  11. Pfirrmann CW, Binkert CA, Zanetti M et al (2001) MR morphology of alar ligaments and occipitoatlantoaxial joints: study in 50 asymptomatic subjects. Radiology 218:133–137

    PubMed  CAS  Google Scholar 

  12. Willauschus WG, Kladny B, Beyer WF et al (1995) Lesions of the alar ligaments. In vivo and in vitro studies with magnetic resonance imaging. Spine 20:2493–2498

    Article  PubMed  CAS  Google Scholar 

  13. Spitzer WO, Skovron ML, Salmi LR et al (1995) Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine 20:1S–73S

    Article  PubMed  CAS  Google Scholar 

  14. Wilmink JT, Patijn J (2001) MR imaging of alar ligament in whiplash-associated disorders: an observer study. Neuroradiology 43:859–863

    Article  PubMed  CAS  Google Scholar 

  15. Roy S, Hol PK, Laerum LT et al (2004) Pitfalls of magnetic resonance imaging of alar ligament. Neuroradiology 46:392–398

    Article  PubMed  Google Scholar 

  16. Krakenes J, Kaale BR, Rorvik J et al (2001) MRI assessment of normal ligamentous structures in the craniovertebral junction. Neuroradiology 43:1089–1097

    Article  PubMed  CAS  Google Scholar 

  17. Krakenes J, Kaale BR, Moen G et al (2002) MRI assessment of the alar ligaments in the late stage of whiplash injury—a study of structural abnormalities and observer agreement. Neuroradiology 44:617–624

    Article  PubMed  CAS  Google Scholar 

  18. Krakenes J, Kaale BR, Nordli H et al (2003) MR analysis of the transverse ligament in the late stage of whiplash injury. Acta Radiol 44:637–644

    Article  PubMed  CAS  Google Scholar 

  19. Myran R, Kvistad KA, Nygaard OP et al (2008) Magnetic resonance imaging assessment of the alar ligaments in whiplash injuries: a case–control study. Spine 33:2012–2016

    Article  PubMed  Google Scholar 

  20. Kaale BR, Krakenes J, Albrektsen G et al (2005) Head position and impact direction in whiplash injuries: associations with MRI-verified lesions of ligaments and membranes in the upper cervical spine. J Neurotrauma 22:1294–1302

    Article  PubMed  Google Scholar 

  21. el Khoury GY, Wira RL, Berbaum KS et al (1992) MR imaging of patellar tendinitis. Radiology 184:849–854

    PubMed  Google Scholar 

  22. Hodler J, Haghighi P, Trudell D et al (1992) The cruciate ligaments of the knee: correlation between MR appearance and gross and histologic findings in cadaveric specimens. AJR Am J Roentgenol 159:357–360

    PubMed  CAS  Google Scholar 

  23. Kjellin I, Ho CP, Cervilla V et al (1991) Alterations in the supraspinatus tendon at MR imaging: correlation with histopathologic findings in cadavers. Radiology 181:837–841

    PubMed  CAS  Google Scholar 

  24. Schweitzer ME, Mitchell DG, Ehrlich SM (1993) The patellar tendon: thickening, internal signal buckling, and other MR variants. Skeletal Radiol 22:411–416

    Article  PubMed  CAS  Google Scholar 

  25. Kaale BR, Krakenes J, Albrektsen G et al (2005) Whiplash-associated disorders impairment rating: neck disability index score according to severity of MRI findings of ligaments and membranes in the upper cervical spine. J Neurotrauma 22:466–475

    Article  PubMed  Google Scholar 

  26. Stemper BD, Yoganandan N, Pintar FA (2004) Gender- and region-dependent local facet joint kinematics in rear impact: implications in whiplash injury. Spine 29:1764–1771

    Article  PubMed  Google Scholar 

  27. World Health Organization (1992) International statistical classification of diseases and related health problems (10th revision). World Health Organization, Geneva

    Google Scholar 

  28. Miettinen T, Leino E, Airaksinen O et al (2004) Whiplash injuries in Finland: the situation 3 years later. Eur Spine J 13:415–418

    Article  PubMed  Google Scholar 

  29. Bunketorp L, Stener-Victorin E, Carlsson J (2005) Neck pain and disability following motor vehicle accidents—a cohort study. Eur Spine J 14:84–89

    Article  PubMed  Google Scholar 

  30. Holm LW, Carroll LJ, Cassidy JD et al (2008) The burden and determinants of neck pain in whiplash-associated disorders after traffic collisions: results of the Bone and Joint Decade 2000–2010 Task Force on Neck Pain and Its Associated Disorders. Spine 33:S52–S59

    Article  PubMed  Google Scholar 

  31. Bunketorp L, Nordholm L, Carlsson J (2002) A descriptive analysis of disorders in patients 17 years following motor vehicle accidents. Eur Spine J 11:227–234

    Article  PubMed  CAS  Google Scholar 

  32. Hirsch SA, Hirsch PJ, Hiramoto H et al (1988) Whiplash syndrome. Fact or fiction? Orthop Clin North Am 19:791–795

    PubMed  CAS  Google Scholar 

  33. Jakobsson L, Norin H, Bunketorp O (2003) Whiplash-associated disorders in frontal impacts: influencing factors and consequences. Traffic Inj Prev 4:153–161

    Article  PubMed  Google Scholar 

  34. Berglund A, Alfredsson L, Jensen I et al (2003) Occupant- and crash-related factors associated with the risk of whiplash injury. Ann Epidemiol 13:66–72

    Article  PubMed  Google Scholar 

  35. Kannus P, Jozsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 73:1507–1525

    PubMed  CAS  Google Scholar 

  36. Doherty ST, Andrey JC, MacGregor C (1998) The situational risks of young drivers: the influence of passengers, time of day and day of week on accident rates. Accid Anal Prev 30:45–52

    Article  PubMed  CAS  Google Scholar 

  37. Giannoudis PV, Mehta SS, Tsiridis E (2007) Incidence and outcome of whiplash injury after multiple trauma. Spine 32:776–781

    Article  PubMed  Google Scholar 

  38. Laapotti S, Keskinen E, Rajalin S (2003) Comparison of young male and female drivers’ attitude and self-reported traffic behaviour in Finland in 1978 and 2001. J Safety Res 34:579–587

    Article  PubMed  Google Scholar 

  39. Wiberg M (2006) Gender differences in the Swedish driving-license test. J Safety Res 37:285–291

    Article  PubMed  Google Scholar 

  40. Williams AF (2003) Teenage drivers: patterns of risk. J Safety Res 34:5–15

    Article  PubMed  Google Scholar 

  41. Smith KL, Daniels JL, Arnoczky SP et al (1994) Effect of joint position and ligament tension on the MR signal intensity of the cruciate ligaments of the knee. J Magn Reson Imaging 4:819–822

    Article  PubMed  CAS  Google Scholar 

  42. Cattrysse E, Barbero M, Kool P et al (2007) 3D morphometry of the transverse and alar ligaments in the occipito–atlanto–axial complex: an in vitro analysis. Clin Anat 20:892–898

    Article  PubMed  CAS  Google Scholar 

  43. Panjabi MM, Oxland TR, Parks EH (1991) Quantitative anatomy of cervical spine ligaments. Part I. Upper cervical spine. J Spinal Disord 4:270–276

    PubMed  CAS  Google Scholar 

  44. Mengiardi B, Pfirrmann CW, Schottle PB et al (2006) Magic angle effect in MR imaging of ankle tendons: influence of foot positioning on prevalence and site in asymptomatic subjects and cadaveric tendons. Eur Radiol 16:2197–2206

    Article  PubMed  Google Scholar 

  45. Oatridge A, Herlihy A, Thomas RW et al (2003) Magic angle imaging of the achilles tendon in patients with chronic tendonopathy. Clin Radiol 58:384–388

    Article  PubMed  CAS  Google Scholar 

  46. Arena L, Morehouse HT, Safir J (1995) MR imaging artifacts that simulate disease: how to recognize and eliminate them. Radiographics 15:1373–1394

    PubMed  CAS  Google Scholar 

  47. Taber KH, Herrick RC, Weathers SW et al (1998) Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics 18:1499–1521

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study received funding from Grieg Foundation and the Norwegian Foundation for Health and Rehabilitation.

Conflict of interest statement

The MRI examinations used in this study were performed at a private institution. The MRI method applied is not generally accepted as a diagnostic tool in the investigation of WAD I–II patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Vetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetti, N., Kråkenes, J., Eide, G.E. et al. MRI of the alar and transverse ligaments in whiplash-associated disorders (WAD) grades 1–2: high-signal changes by age, gender, event and time since trauma. Neuroradiology 51, 227–235 (2009). https://doi.org/10.1007/s00234-008-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-008-0482-7

Keywords

Navigation