Skip to main content

Advertisement

Log in

Increased signal intensity of the cochlea on pre- and post-contrast enhanced 3D-FLAIR in patients with vestibular schwannoma

  • Head and Neck Radiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

In the vestibular schwannoma patients, the pathophysiologic mechanism of inner ear involvement is still unclear. We investigated the status of the cochleae in patients with vestibular schwannoma by evaluating the signal intensity of cochlear fluid on pre- and post-contrast enhanced thin section three-dimensional fluid-attenuated inversion recovery (3D-FLAIR).

Methods

Twenty-eight patients were retrospectively analyzed. Post-contrast images were obtained in 18 patients, and 20 patients had the records of their pure-tone audiometry. Regions of interest of both cochleae (C) and of the medulla oblongata (M) were determined on 3D-FLAIR images by referring to 3D heavily T2-weighted images on a workstation. The signal intensity ratio between C and M on the 3D-FLAIR images (CM ratio) was then evaluated. In addition, correlation between the CM ratio and the hearing level was also evaluated.

Results

The CM ratio of the affected side was significantly higher than that of the unaffected side (p < 0.001). In the affected side, post-contrast signal elevation was observed (p < 0.005). In 13 patients (26 cochleae) who underwent both gadolinium injection and the pure-tone audiometry, the post-contrast CM ratio correlated with hearing level (p < 0.05).

Conclusion

The results of the present study suggest that alteration of cochlear fluid composition and increased permeability of the blood–labyrinthine barrier exist in the affected side in patients with vestibular schwannoma. Furthermore, although weak, positive correlation between post-contrast cochlear signal intensity on 3D-FLAIR and hearing level warrants further study to clarify the relationship between 3D-FLAIR findings and prognosis of hearing preservation surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Silverstein H, Schuknecht HF (1966) Biochemical studies of inner ear fluid in man: changes in otosclerosis, Meniere's disease, and acoustic neuroma. Arch Otolaryngol 84:395–402

    CAS  PubMed  Google Scholar 

  2. Silverstein H (1971) Inner ear fluid proteins in acoustic neuroma, Meniere's disease, and otosclerosis. Ann Otol Rhinol Laryngol 80:27–35

    CAS  PubMed  Google Scholar 

  3. Silverstein H (1973) Labyrinthine tap as a diagnostic test for acoustic neuroma. Otolaryngol Clin North Am 6:229–244

    CAS  PubMed  Google Scholar 

  4. Silverstein H, Naufal P, Belal A (1973) Causes of elevated perilymph protein concentrations. Laryngoscope 83:476–487

    Article  CAS  PubMed  Google Scholar 

  5. Melhem ER, Jara H, Eustace S (1997) Fluid-attenuated inversion recovery MR imaging: identification of protein concentration threshold for CSF hyperintensity. AJR Am J Roentgenol 169:859–862

    CAS  PubMed  Google Scholar 

  6. Mishra AM, Reddy SJ, Husain M, Behari S, Husain N, Prasad KN, Kumar S, Gupta RK (2006) Comparison of the magnetization transfer ratio and fluid-attenuated inversion recovery imaging signal intensity in differentiation of various cystic intracranial mass lesions and its correlation with biological parameters. J Magn Reson Imaging 24:52–56

    Article  PubMed  Google Scholar 

  7. Naganawa S, Koshikawa T, Nakamura T, Kawai H, Fukatsu H, Ishigaki T, Komada T, Maruyama K, Takizawa O (2004) Comparison of flow artifacts between 2D-FLAIR and 3D-FLAIR sequences at 3T. Eur Radiol 14:1901–1908

    PubMed  Google Scholar 

  8. Sugiura M, Naganawa S, Sato E, Nakashima T (2006) Visualization of a high protein concentration in the cochlea of a patient with a large endolymphatic duct and sac, using three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging. J Laryngol Otol 120:1084–1086

    Article  CAS  PubMed  Google Scholar 

  9. Sugiura M, Naganawa S, Teranishi M, Sato E, Kojima S, Nakashima T (2006) Inner ear hemorrhage in systemic lupus erythematosus. Laryngoscope 116:826–828

    Article  PubMed  Google Scholar 

  10. Otake H, Sugiura M, Naganawa S, Nakashima T (2006) 3D-FLAIR magnetic resonance imaging in the evaluation of mumps deafness. Int J Pediatr Otorhinolaryngol 70:2115–2117

    Article  PubMed  Google Scholar 

  11. Sugiura M, Naganawa S, Teranishi M, Nakashima T (2006) Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging findings in patients with sudden sensorineural hearing loss. Laryngoscope 116:1451–1454

    Article  PubMed  Google Scholar 

  12. Sone M, Mizuno T, Sugiura M, Naganawa S, Nakashima T (2007) Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging investigation of inner ear disturbances in cases of middle ear cholesteatoma with labyrinthine fistula. Otol Neurotol 28:1029–1033

    Article  PubMed  Google Scholar 

  13. Sugiura M, Naganawa S, Sone M, Yoshida T, Nakashima T (2008) Three-dimensional fluid attenuated inversion recovery magnetic resonance imaging findings in a patient with cochlear otosclerosis. Auris Nasus Larynx 35:269–272

    Article  PubMed  Google Scholar 

  14. Committee on Hearing and Equilibrium, American Academy of Otolaryngology-Head and Neck Surgery (1995) Committee on hearing and equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (vestibular schwannoma). Otolaryngol Head Neck Surg 113:179–180

    Article  Google Scholar 

  15. Eckermeier L, Pirsig W, Mueller D (1979) Histopathology of 30 non-operated acoustic schwannomas. Arch otorhinolaryngol 222:1–9

    Article  CAS  PubMed  Google Scholar 

  16. O'Connor AF, France MW, Morrison AW (1981) Perilymph total protein levels associated with cerebellopontine angle lesions. Am J Otol 2:193–195

    PubMed  Google Scholar 

  17. Thomsen J, Saxtrup O, Tos M (1982) Quantitated determination of proteins in perilymph in patients with acoustic neuroma. ORL J Otorhinolaryngol Relat Spec 44:61–65

    CAS  PubMed  Google Scholar 

  18. Naganawa S, Komada T, Fukatsu H, Ishigaki T, Takizawa O (2006) Observation of contrast enhancement in the cochlear fluid space of healthy subjects using a 3D-FLAIR sequence at 3 Tesla. Eur Radiol 16:733–737

    Article  PubMed  Google Scholar 

  19. Mathews VP, Caldemeyer KS, Lowe MJ, Greenspan SL, Weber DM, Ulmer JL (1999) Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging. Radiology 211:257–263

    CAS  PubMed  Google Scholar 

  20. Jackson EF, Hayman LA (2000) Meningeal enhancement on fast FLAIR images. Radiology 215:922–924

    CAS  PubMed  Google Scholar 

  21. Kastenbauer S, Klein M, Koedel U, Pfister HW (2001) Reactive nitrogen species contribute to blood–labyrinth barrier disruption in suppurative labyrinthitis complicating experimental pneumococcal meningitis in the rat. Brain res 904:208–217

    Article  CAS  PubMed  Google Scholar 

  22. Nakashima T, Naganawa S, Sone M, Tominaga M, Hayashi H, Yamamoto H, Liu X, Nuttall AL (2003) Disorders of cochlear blood flow. Brain Res Brain Res Rev 43:17–28

    Article  PubMed  Google Scholar 

  23. Naganawa S, Sugiura M, Kawamura M, Fukatsu H, Nakashima T, Maruyama K (2006) Prompt contrast enhancement of cerebrospinal fluid space in the fundus of the internal auditory canal: observations in patients with meningeal diseases on 3D-FLAIR images at 3 Tesla. Magn Reson Med Sci 5:151–155

    Article  PubMed  Google Scholar 

  24. O'Connor AF, Luxon LM, Shortman RC, Thompson EJ, Morrison AW (1982) Electrophoretic separation and identification of perilymph proteins in cases of acoustic neuroma. Acta Otolaryngol 93:195–200

    Article  PubMed  Google Scholar 

  25. Palva T, Raunio V (1982) Cerebrospinal fluid and acoustic neuroma specific proteins in perilymph. Acta Otolaryngol 93:201–203

    Article  CAS  PubMed  Google Scholar 

  26. Rasmussen N, Bendtzen K, Thomsen J, Tos M (1983) Specific cellular immunity in acoustic neuroma patients. Otolaryngol Head Neck Surg 91:532–536

    CAS  PubMed  Google Scholar 

  27. Rasmussen N, Bendtzen K, Thomsen J, Tos M (1984) Antigenicity and protein content of perilymph in acoustic neuroma patients. Acta Otolaryngol 97:502–508

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida T, Sugiura M, Naganawa S, Teranishi M, Nakata S, Nakashima T (2008) Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging findings and prognosis in sudden sensorineural hearing loss. Laryngoscope 118:1433–1437

    Article  PubMed  Google Scholar 

  29. Gussen R (1976) Sudden deafness of vascular origin: a human temporal bone study. Ann Otol Rhinol Laryngol 85:94–100

    CAS  PubMed  Google Scholar 

  30. Fitzgerald DC, Mark AS (1999) Viral cochleitis with gadolinium enhancement of the cochlea on magnetic resonance imaging scan. Otolaryngol Head Neck Surg 121:130–132

    Article  CAS  PubMed  Google Scholar 

  31. Barker GJ (1998) 3D fast FLAIR: a CSF-nulled 3D fast spin-echo pulse sequence. Magn Reson Imaging 16:715–720

    Article  CAS  PubMed  Google Scholar 

  32. Naganawa S, Kawai H, Fukatsu H, Ishigaki T, Komada T, Maruyama K, Takizawa O (2004) High-speed imaging at 3 Tesla: a technical and clinical review with an emphasis on whole-brain 3D imaging. Magn Reson Med Sci 3:177–187

    Article  PubMed  Google Scholar 

  33. Haacke EM, Frahm J (1991) A guide to understanding key aspects of fast gradient-echo imaging. J Magn Reson Imaging 1:621–624

    Article  CAS  PubMed  Google Scholar 

  34. Somers T, Casselman J, de Ceulaer G, Govaerts P, Offeciers E (2001) Prognostic value of magnetic resonance imaging findings in hearing preservation surgery for vestibular schwannoma. Otol Neurotol 22:87–94

    Article  CAS  PubMed  Google Scholar 

  35. Naganawa S, Satake H, Kawamura M, Fukatsu H, Sone M, Nakashima T (2008) Separate visualization of endolymphatic space, perilymphatic space and bone by a single pulse sequence; 3D-inversion recovery imaging utilizing real reconstruction after intratympanic Gd-DTPA administration at 3 Tesla. Eur Radiol 18:920–924

    Article  PubMed  Google Scholar 

  36. Naganawa S, Satake H, Iwano S, Fukatsu H, Sone M, Nakashima T (2008) Imaging endolymphatic hydrops at 3 Tesla using 3D-FLAIR with intratympanic Gd-DTPA administration. Magn Reson Med Sci 7:85–91

    Article  PubMed  Google Scholar 

  37. Naganawa S, Koshikawa T, Fukatsu H, Ishigaki T, Fukuta T (2001) MR cisternography of the cerebellopontine angle: comparison of three-dimensional fast asymmetrical spin-echo and three-dimensional constructive interference in the steady-state sequences. AJNR Am J Neuroradiol 22:1179–1185

    CAS  PubMed  Google Scholar 

  38. Bhadelia RA, Tedesco KL, Hwang S, Erbay SH, Lee PH, Shao W, Heilman C (2008) Increased cochlear fluid-attenuated inversion recovery signal in patients with vestibular schwannoma. AJNR Am J Neuroradiol 29:720–723

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, M., Naganawa, S., Kawai, H. et al. Increased signal intensity of the cochlea on pre- and post-contrast enhanced 3D-FLAIR in patients with vestibular schwannoma. Neuroradiology 51, 855–863 (2009). https://doi.org/10.1007/s00234-009-0588-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-009-0588-6

Keywords

Navigation