Skip to main content

Advertisement

Log in

MTR variations in normal adult brain structures using balanced steady-state free precession

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Magnetization transfer (MT) is sensitive to the macromolecular environment of water protons and thereby provides information not obtainable from conventional magnetic resonance imaging (MRI). Compared to standard methods, MT-sensitized balanced steady-state free precession (bSSFP) offers high-resolution images with significantly reduced acquisition times. In this study, high-resolution magnetization transfer ratio (MTR) images from normal appearing brain structures were acquired with bSSFP.

Methods

Twelve subjects were studied on a 1.5 T scanner. MTR values were calculated from MT images acquired in 3D with 1.3 mm isotropic resolution. The complete MT data set was acquired within less than 3.5 min. Forty-one brain structures of the white matter (WM) and gray matter (GM) were identified for each subject.

Results

MTR values were higher for WM than GM. In general, MTR values of the WM and GM structures were in good accordance with the literature. However, MTR values showed more homogenous values within WM and GM structures than previous studies.

Conclusions

MT-sensitized bSSFP provides isotropic high-resolution MTR images and hereby allows assessment of reliable MTR data in also very small brain structures in clinically feasible acquisition times and is thus a promising sequence for being widely used in the clinical routine. The present normative data can serve as a reference for the future characterization of brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cercignani M, Symms MR, Schmiere K et al (2005) Three-dimensional quantitative magnetization transfer imaging of the human brain. NeuroImage 27:436–441

    Article  PubMed  Google Scholar 

  2. Henkelman RM, Huang X, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ (1993) Quantitative interpretation of magnetization transfer. Magn Reson Med 29:759–766

    Article  CAS  PubMed  Google Scholar 

  3. Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46:923–931

    Article  CAS  PubMed  Google Scholar 

  4. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    Article  CAS  PubMed  Google Scholar 

  5. Dousset V, Grossman RI, Ramer KN et al (1992) Experimental allergic encephalomyelinitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483–491

    CAS  PubMed  Google Scholar 

  6. Barker GJ, Tofts PS, Gass A (1996) An interleaved sequence for accurate and reproducible clinical measurement of magnetization transfer ratio. Magn Reson Imaging 14:403–411

    Article  CAS  PubMed  Google Scholar 

  7. Ou X, Gochberg DF (2008) MT effects and T1 quantification in single-slice spoiled gradient echo imaging. Magn Reson Med 59:835–845

    Article  PubMed  Google Scholar 

  8. Pui MH (2000) Magnetization transfer analysis of brain tumor, infection, and infarction. J Magn Reson Imaging 12:395–399

    Article  CAS  PubMed  Google Scholar 

  9. Okumura A, Takenaka K, Nishimura Y et al (1999) The characterization of human brain tumor using magnetization transfer technique in magnetic resonance imaging. Neurol Res 21:250–254

    CAS  PubMed  Google Scholar 

  10. Fazekas F, Ropele S, Enzinger C et al (2005) MTI of white matter hyperintensities. Brain 128:2926–2932

    Article  PubMed  Google Scholar 

  11. Inglese M, Salvi F, Iannucci G, Mancardi GL, Mascalchi M, Filippi M (2002) Magnetization transfer and diffusion tensor imaging of acute disseminated encephalomyelitis. AJNR Am J Neuroradiol 23:267–272

    PubMed  Google Scholar 

  12. Ramani A, Dalton C, Miller DH, Tofts PS (2002) Precise estimation of fundamental in-vivo MT parameters in human brain in clinically feasible times. Magn Reson Imaging 20:721–731

    Article  CAS  PubMed  Google Scholar 

  13. Tozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS (2003) Quantitative magnetization transfer imaging of bound protons in multiple sclerosis. Magn Reson Med 50:83–91

    Article  CAS  PubMed  Google Scholar 

  14. Davies GR, Tozer DJ, Cercignani M et al (2004) Estimation of the macromolecular proton fraction and bound pool T2 in multiple sclerosis. Multiple Sclerosis 10:607–613

    Article  CAS  PubMed  Google Scholar 

  15. Tofts PS, Steens SCA, van Buchem MA (2003) MT Magnetization transfer. In: Tofts P (ed) Quantitative MRI of the brain: measuring changes by diseases, 1st edn. Wiley, New York, pp 257–298

    Google Scholar 

  16. Berry I, Barker GJ, Barkhof F et al (1999) A multicenter measurement of magnetization transfer ratio in normal white matter. J Magn Reson Imaging 9:441–446

    Article  CAS  PubMed  Google Scholar 

  17. Sled JG, Pike GB (2000) Quantitative interpretation of magnetization transfer in spoiled gradient echo MRI sequences. J Magn Reson 145:24–36

    Article  CAS  PubMed  Google Scholar 

  18. Barker GJ, Schreiber WG, Gass A et al (2005) A standardised method for measuring magnetisation transfer ratio on MR imagers different manufacturers—the EuroMR sequence. MAGMA 18:76–80

    Article  CAS  PubMed  Google Scholar 

  19. Lee RR, Dagher AP (1997) Low power method of estimating the magnetization transfer bound-pool macromolecular fraction. J Magn Reson Imaging 7:913–917

    Article  CAS  PubMed  Google Scholar 

  20. Yarnykh VL (2002) Pulsed Z-spectroscopic imaging of cross-relaxation parameters in tissues for human MRI: theory and clinical applications. Magn Reson Med 47:929–939

    Article  PubMed  Google Scholar 

  21. Bieri O, Scheffler K (2006) On the origin of apparent low tissue signal in balanced SSFP. Magn Reson Med 56:1067–1074

    Article  CAS  PubMed  Google Scholar 

  22. Bieri O, Scheffler K (2007) Optimized balanced steady-state free precession magnetization transfer imaging. Magn Reson Med 58:511–518

    Article  CAS  PubMed  Google Scholar 

  23. Gloor M, Scheffler K, Bieri O (2009) Intra- and inter-scanner variability of magnetization transfer ratio using balanced SSFP. Pro Intl Soc Mag Reson Med, Honolulu, Hawaii, USA

  24. Mehta RC, Pike GB, Enzmann DR (1995) Magnetization transfer MR of the normal adult brain. AJNR Am J Neuroradiol 16:2085–2091

    CAS  PubMed  Google Scholar 

  25. Papanikolaou N, Maniatis V, Pappas J, Roussakis A, Efthimiadou R, Andreou J (2002) Biexponential T2 relaxation time analysis of the brain: correlation with magnetization transfer ratio. Invest Radiol 37:363–367

    Article  CAS  PubMed  Google Scholar 

  26. Silver NC, Barker GJ, MacManus DG, Tofts PS, Miller DH (1997) Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life. J Neurol Neurosurg Psychiatry 62:223–228

    Article  CAS  PubMed  Google Scholar 

  27. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23:S208–219

    Article  PubMed  Google Scholar 

  28. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  29. Bieri O, Mamisch TC, Trattnig S et al (2008) Steady state free precession magnetization transfer imaging. Magn Reson Med 60:1261–1266

    Article  PubMed  Google Scholar 

  30. Hu BS, Conolly SM, Wright GA et al (1992) Pulsed saturation transfer contrast. Magn Reson Med 26:231–240

    Article  CAS  PubMed  Google Scholar 

  31. Schneider E, Prost RW, Glover GH (1993) Pulsed magnetization transfer versus continuous wave irradiation for tissue contrast enhancement. J Magn Reson Imaging 3:417–423

    Article  CAS  PubMed  Google Scholar 

  32. Hua J, Hurst GC (1995) Analysis of on- and off-resonance magnetization transfer techniques. J Magn Reson Imaging 5:113–120

    Article  CAS  PubMed  Google Scholar 

  33. Graham SJ, Henkelman RM (1997) Understanding pulsed magnetization transfer. J Magn Reson Imaging 7:903–912

    Article  CAS  PubMed  Google Scholar 

  34. Engelbrecht V, Rassek M, Preiss S, Wald C, Mödder U (1998) Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol 19:1923–1929

    CAS  PubMed  Google Scholar 

  35. Rovaris M, Iannucci G, Cercignani M et al (2003) Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology 227:731–738

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Thomas Zumbrunn (PhD) and Thomas Fabbro (PhD) for support of statistical analysis.

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meritxell Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, M., Gloor, M., Bieri, O. et al. MTR variations in normal adult brain structures using balanced steady-state free precession. Neuroradiology 53, 159–167 (2011). https://doi.org/10.1007/s00234-010-0714-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0714-5

Keywords

Navigation