Skip to main content
Log in

The effect of stents on intra-aneurysmal hemodynamics: in vitro evaluation of a pulsatile sidewall aneurysm using laser Doppler anemometry

  • Interventional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Hemodynamic modification by means of flow diversion is increasingly used for treatment of intracranial aneurysms. Despite of promising results, there is still a paucity of methods to reliably predict long-term success of this technique. Laser Doppler anemometry (LDA) can be used to quantify the influence of stents on intra-aneurysmal flow in vitro.

Methods

All experiments were performed with a pulsatile model of a sidewall aneurysm. A physiologic flow was created with a circulatory experimental setup, and a transparent non-Newtonian glycerol–water solution was used to substitute human blood. Flow velocity was measured with a one-component LDA system, recording flow components parallel and perpendicular to the parent vessel. Three different stents (Solitaire, Silk, Phenox flow diverter) were deployed over the aneurysm neck, respectively.

Results

Flow reduction was 67.59% (inflow zone), 9.65% (dome) and 37.94% (outflow zone) by the Solitaire stent. The Silk stent reduced the flow by 58.15% (inflow zone), 89.06% (dome) and 90.06% (outflow zone). The Phenox flow diverter reduced the flow by 96.76% (inflow zone), 90% (dome) and 90.91% (outflow zone) when positioned with narrow stent struts but increased the velocity of up to seven times compared to the unstented model when placed with loose strut packing in the proximal part of the aneurysm.

Conclusion

LDA is a feasible method to quantify intra-aneurysmal flow and flow reduction efficacy of stents in vitro. Flow reduction was negligible with a standard self-expanding stent. For dedicated flow diverters, it depended both on stent design and on appropriate positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahlhelm F, Roth C, Kaufmann R, Schulte-Altedorneburg G, Romeike BF, Reith W (2007) Treatment of wide-necked intracranial a-neurysms with a novel self-expanding two-zonal endovascular stent device. Neuroradiology 49(12):1023–1028

    Article  PubMed  Google Scholar 

  2. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA (2007) Cloft HJ.A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 38(8):2346–2352

    Article  PubMed  Google Scholar 

  3. Vanninen R, Manninen H, Ronkainen A (2003) Broad-based intracranial aneurysms: thrombosis induced by stent placement. AJNR Am J Neuroradiol 24(2):263–266

    PubMed  Google Scholar 

  4. Pumar JM, Lete I, Pardo MI, Vázquez-Herrero F, Blanco M (2008) LEO stent monotherapy for the endovascular reconstruction of fusiform aneurysms of the middle cerebral artery. AJNR Am J Neuroradiol 29(9):1775–1776

    Article  PubMed  CAS  Google Scholar 

  5. Lylyk P, Miranda C, Ceratto R, Ferrario A, Scrivano E, Luna HR, Berez AL, Tran Q, Nelson PK, Fiorella D (2009) Curative endovascular reconstruction of cerebral aneurysms with the pipeline embolization device: the Buenos Aires experience. Neurosurgery 64(4):632–642

    Article  PubMed  Google Scholar 

  6. Liepsch D, Moravec S, Baumgart R (1992) Some flow visualization and laser-Doppler-velocity measurements in a true-to-scale elastic model of a human aortic arch—a new model technique. Biorheology 29(5–6):563–580

    PubMed  CAS  Google Scholar 

  7. Gobin YP, Counord JL, Flaud P, Duffaux J (1994) In vitro study of haemodynamics in a giant saccular aneurysm model; influence of flow dynamics in the parent vessel and effects of coil embolisation. Neuroradiology 36(7):530–536

    Article  PubMed  CAS  Google Scholar 

  8. Graves VB, Strother CM, Partington CR, Rappe A (1992) Flow dynamics of lateral carotid artery aneurysms and their effects on coils and balloons: an experimental study in dogs. AJNR Am J Neuroradiol 13(1):189–196

    PubMed  CAS  Google Scholar 

  9. Strother CM, Graves VB, Rappe A (1992) Aneurysm hemodynamics: an experimental study. AJNR Am J Neuroradiol 13(4):1089–1095

    PubMed  CAS  Google Scholar 

  10. Steiger HJ, Perktold K (1997) Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics. Neurosurgery 41(1):326–327

    Article  PubMed  CAS  Google Scholar 

  11. Sadasivan C, Cesar L, Seong J, Rakian A, Hao Q, Tio FO, Wakhloo AK, Lieber BB (2009) An original flow diversion device for the treatment of intracranial aneurysms: evaluation in the rabbit elastase-induced model. Stroke 40(3):952–958

    Article  PubMed  Google Scholar 

  12. Seong J, Wakhloo AK, Lieber BB (2007) In vitro evaluation of flow divertors in an elastase-induced saccular aneurysm model in rabbit. J Biomech Eng 129(6):863–872

    Article  PubMed  Google Scholar 

  13. Lieber BB, Livescu V, Hopkins LN, Wakhloo AK (2002) Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann Biomed Eng 30(6):768–777

    Article  PubMed  Google Scholar 

  14. Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA (2008) PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech Eng 130(2):021015

    Article  PubMed  Google Scholar 

  15. Trager AL, Sadasivan C, Seong J, Lieber BB (2009) Correlation between angiographic and particle image velocimetry quantifications of flow diverters in an in vitro model of elastase-induced rabbit aneurysms. J Biomech Eng 131(3):034506

    Article  PubMed  Google Scholar 

  16. Augsburger L, Farhat M, Reymond P, Fonck E, Kulcsar Z, Stergiopulos N, Rüfenacht DA (2009) Effect of flow diverter porosity on intraaneurysmal blood flow. Klin Neuroradiol 19(3):204–214

    Article  PubMed  Google Scholar 

  17. Shojima M, Oshima M, Takagi K et al (2004) Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505

    Article  PubMed  Google Scholar 

  18. Steinman DA, Milner JS, Norley CJ, Lownie SP, Holdsworth DW (2003) Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am J Neuroradiol 24(4):559–566

    PubMed  Google Scholar 

  19. Bousel L, Rayz V, McCulloch C et al (2008) Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39(11):2997–3002

    Article  Google Scholar 

  20. Castro MA, Putman CM, Cebral JR (2006) Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. AJNR Am J Neuroradiol 27(8):1703–1709

    PubMed  CAS  Google Scholar 

  21. Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi A (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans Med Imaging 24(4):457–467

    Article  PubMed  Google Scholar 

  22. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM (2005) Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am J Neuroradiol 26(10):2550–2559

    PubMed  Google Scholar 

  23. Mantha A, Karmonik C, Benndorf G, Strother C, Metcalfe R (2006) Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am J Neuroradiol 27(5):1113–1118

    PubMed  CAS  Google Scholar 

  24. Benndorf G, Ionescu M (2009) Y Alvarado MV, Hipp J, Metcalfe R. Wall shear stress in intracranial self-expanding stents studied using ultra-high-resolution 3D reconstructions. AJNR Am J Neuroradiol 30(3):479–486

    Article  PubMed  CAS  Google Scholar 

  25. Larrabide I, Radaelli A, Frangi A (2008) Fast virtual stenting with deformable meshes: application to intracranial aneurysms. Med Image Comput Comput Assist Interv 11(Pt 2):790–797

    PubMed  Google Scholar 

  26. Ohta M, Wetzel SG, Dantan P, Bachelet C, Lovblad KO, Yilmaz H, Flaud P, Rüfenacht DA (2005) Rheological changes after stenting of an cerebral aneurysm: a finite element modeling approach. Cardiovasc Intervent Radiol 28(6):768–772

    Article  PubMed  Google Scholar 

  27. Hirabayashi M, Ohta M, Rüfenacht DA, Chopard B (2003) Characterization of flow reduction properties in an aneurysm due to a stent. Phys Rev E Stat Nonlin Soft Matter Phys 68(2 Pt 1):021918

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Dorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, F., Niedermeyer, F., Balasso, A. et al. The effect of stents on intra-aneurysmal hemodynamics: in vitro evaluation of a pulsatile sidewall aneurysm using laser Doppler anemometry. Neuroradiology 53, 267–272 (2011). https://doi.org/10.1007/s00234-010-0723-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-010-0723-4

Keywords

Navigation