Skip to main content

Advertisement

Log in

Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The purpose of the present study was to look for the possible predictors which might discriminate between high- and low-grade gliomas by pooling dynamic contrast-enhanced (DCE)-perfusion derived indices and immunohistochemical markers.

Methods

DCE-MRI was performed in 76 patients with different grades of gliomas. Perfusion indices, i.e., relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), permeability (k trans and k ep), and leakage (v e) were quantified. MMP-9-, PRL-3-, HIF-1α-, and VEGF-expressing cells were quantified from the excised tumor tissues. Discriminant function analysis using these markers was used to identify discriminatory variables using a stepwise procedure. To look for correlations between immunohistochemical parameters and DCE metrics, Pearson's correlation coefficient was also used.

Results

A discriminant function for differentiating between high- and low-grade tumors was constructed using DCE-MRI-derived rCBV, k ep, and v e. The form of the functions estimated are “D 1 = 0.642 × rCBV + 0.591 × k ep − 1.501 × v e − 1.550” and “D 2 = 1.608 × rCBV + 3.033 × k ep + 5.508 × v e − 8.784” for low- and high-grade tumors, respectively. This function classified overall 92.1% of the cases correctly (89.1% high-grade tumors and 100% low-grade tumors). In addition, VEGF expression correlated with rCBV and rCBF, whereas MMP-9 expression correlated with k ep. A significant positive correlation of HIF-1α with rCBV and VEGF expression was also found.

Conclusion

DCE-MRI may be used to differentiate between high-grade and low-grade brain tumors non-invasively, which may be helpful in appropriate treatment planning and management of these patients. The correlation of its indices with immunohistochemical markers suggests that this imaging technique is useful in tissue characterization of gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  2. Daumas-Duport C, Scheithauer B, O'Fallon J, Kelly P (1998) Grading of astrocytomas. A simple and reproducible method. Cancer 62(10):2152–2165

    Article  Google Scholar 

  3. Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low grade) astrocytoma. J Neurosurg 79(4):533–536

    Article  PubMed  CAS  Google Scholar 

  4. Petrella JR, Provenzale JM (2000) MR perfusion imaging of the brain: techniques and applications. Am J Roentgenol 175(1):207–219

    CAS  Google Scholar 

  5. Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191(1):41–51

    PubMed  CAS  Google Scholar 

  6. Cha S, Knopp EA, Johnson G et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology 223(1):11–29

    Article  PubMed  Google Scholar 

  7. Pauliah M, Saxena V, Haris M, Husain N, Rathore RK, Gupta RK (2007) Improved T(1)-weighted dynamic contrast-enhanced MRI to probe microvascularity and heterogeneity of human glioma. Magn Reson Imaging 25(9):1292–1299

    Article  PubMed  Google Scholar 

  8. Singh A, Haris M, Rathore D, Purwar A et al (2007) Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 26(4):871–880

    Article  PubMed  Google Scholar 

  9. Haris M, Gupta RK, Singh A et al (2008) Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI. Neuroradiology 50(6):531–540

    Article  PubMed  Google Scholar 

  10. Haris M, Kumar S, Raj MK et al (2008) Serial diffusion tensor imaging to characterize radiation-induced changes in normal-appearing white matter following radiotherapy in patients with adult low-grade gliomas. Radiat Med 26(3):140–150

    Article  PubMed  Google Scholar 

  11. Awasthi R, Verma SK, Haris M, Singh A, Behari S, Jaiswal AK (2010) Comparative evaluation of dynamic contrast-enhanced perfusion with diffusion tensor imaging metrics in assessment of corticospinal tract infiltration in malignant glioma. J Comput Assist Tomogr 34(1):82–88

    Article  PubMed  Google Scholar 

  12. Ferrara N, Devis-Smith T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–25

    Article  PubMed  CAS  Google Scholar 

  13. Veikkola T, Alitalo K (1999) VEGFs, receptors and angiogenesis. Semin Cancer Biol 9(3):211–220

    Article  PubMed  CAS  Google Scholar 

  14. An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor-1 alpha. Nature 392(6674):405–408

    Article  PubMed  CAS  Google Scholar 

  15. Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273(20):11995–11998

    Article  PubMed  CAS  Google Scholar 

  16. VanMeter TE, Rooprai HK, Kibble MM et al (2001) The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53(2):213–235

    Article  PubMed  CAS  Google Scholar 

  17. Levicar N, Nuttall RK, Lah TT (2003) Proteases in brain tumour progression. Acta Neurochir Wien 145(9):825–838

    Article  PubMed  CAS  Google Scholar 

  18. Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–01

    Article  PubMed  CAS  Google Scholar 

  19. Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6(12):931–944

    Article  PubMed  CAS  Google Scholar 

  20. Forsyth PA, Wong H, Laing TD et al (1999) Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79(11–12):1828–1835

    Article  PubMed  CAS  Google Scholar 

  21. Jadhav U, Chigurupati S, Lakka SS, Mohanam S (2004) Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int J Oncol 25(5):1407–1414

    PubMed  CAS  Google Scholar 

  22. Liang F, Luo Y, Dong Y et al (2008) Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase. J Biol Chem 283(16):10339–10346

    Article  PubMed  CAS  Google Scholar 

  23. Saha S, Bardelli A, Buckhaults P et al (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294(5545):1343–1346

    Article  PubMed  CAS  Google Scholar 

  24. Wu X, Zeng H, Zhang X et al (2004) Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 164(6):2039–2054

    Article  PubMed  CAS  Google Scholar 

  25. Parker BS, Argani P, Cook BP et al (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64(21):7857–7866

    Article  PubMed  CAS  Google Scholar 

  26. Kong L, Li Q, Wang L, Liu Z, Sun T (2007) The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomas. Neuropathology 27(6):516–521

    Article  PubMed  Google Scholar 

  27. Singh A, Haris M, Rathore D et al (2007) Quantification of physiological and hemodynamic indices using T(1) dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 26(4):871–880

    Article  PubMed  Google Scholar 

  28. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  PubMed  CAS  Google Scholar 

  29. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  PubMed  CAS  Google Scholar 

  30. Kassner A, Thornhill R (2011) Measuring the integrity of the human blood-brain barrier using magnetic resonance imaging. Meth Mol Biol 686:229–245

    Article  CAS  Google Scholar 

  31. Vidarsson L, Thornhill RE, Liu F, Mikulis DJ, Kassner A (2009) Quantitative permeability magnetic resonance imaging in acute ischemic stroke: how long do we need to scan? Magn Reson Imaging 27(9):1216–1222

    Article  PubMed  Google Scholar 

  32. Haris M, Husain N, Singh A et al (2008) Dynamic contrast-enhanced derived cerebral blood volume correlates better with leak correction than with no correction for vascular endothelial growth factor, microvascular density, and grading of astrocytoma. J Comput Assist Tomogr 32(6):955–965

    Article  PubMed  Google Scholar 

  33. Cher LM, Murone C, Lawrentschuk N et al (2006) Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 47(3):410–418

    PubMed  CAS  Google Scholar 

  34. Alvarez JI, Teale JM (2007) Evidence for differential changes of junctional complex proteins in murine neurocysticerosis dependent upon CNS vasculature. Brain Res 1169:98–111

    Article  PubMed  CAS  Google Scholar 

  35. Zhao Y, Xiao A, diPierro CG et al (2010) An extensive invasive intracranial human glioblastoma xenograft model: role of high level matrix metalloproteinase 9. Am J Pathol 176(6):3032–3049

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

R. Awasthi received financial assistance from the Indian Council of Medical Research, New Delhi, India.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awasthi, R., Rathore, R.K.S., Soni, P. et al. Discriminant analysis to classify glioma grading using dynamic contrast-enhanced MRI and immunohistochemical markers. Neuroradiology 54, 205–213 (2012). https://doi.org/10.1007/s00234-011-0874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-011-0874-y

Keywords

Navigation