Skip to main content
Log in

Quantitative MRI shows cerebral microstructural damage in hemolytic–uremic syndrome patients with severe neurological symptoms but no changes in conventional MRI

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Severe neurological symptoms in Shiga toxin-producing Escherichia coli infection associated hemolytic–uremic syndrome (STEC–HUS) are often accompanied by none or only mild alterations of cerebral magnetic resonance imaging (MRI). This study aims to analyze if quantitative MRI is able to reveal cerebral pathological alterations invisible for conventional MRI.

Methods

In nine patients with STEC–HUS associated severe neurological symptoms but inconspicuous cerebral MRI findings maps of the parameters T2 relaxation time, relative proton density (PD), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were generated. Quantitative values of these parameters were measured at the basal ganglia, thalamus, and white matter of the frontal and parietal lobe and compared to those of nine age- and sex-matched controls.

Results

Significant T2 prolongation (p < 0.01) was found in the basal ganglia of all patients compared to controls. PD and ADC were not significantly altered. A significant reduction of FA in patients was seen at caput nuclei caudati (p < 0.01).

Conclusion

Prolonged T2 relaxation time indicates cerebral microstructural damages in these patients despite their inconspicuous MRI findings. T2 relaxometry could be used as a complementary tool for the assessment of metabolic–toxic brain syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADC:

Apparent diffusion coefficient

FA:

Fractional anisotropy

MRI:

Magnetic resonance imaging

PD:

Proton density

STEC:

Shiga toxin-producing E. coli

STEC–HUS:

Shiga toxin-producing E. coli infection associated hemolytic–uremic syndrome

Stx:

Shiga toxin

References

  1. Roche-Martinez A, Poo P, Maristany-Cucurella M, Jimenez-Llort A, Camacho JA, Campistol J (2008) Neurologic presentation in haemolytic–uraemic syndrome. Rev Neurol 47(4):191–196

    PubMed  CAS  Google Scholar 

  2. Eriksson KJ, Boyd SG, Tasker RC (2001) Acute neurology and neurophysiology of haemolytic–uraemic syndrome. Arch Dis Child 84(5):434–435

    Article  PubMed  CAS  Google Scholar 

  3. Gallo EG, Gianantonio CA (1995) Extrarenal involvement in diarrhoea-associated haemolytic–uraemic syndrome. Pediatr Nephrol 9(1):117–119

    Article  PubMed  CAS  Google Scholar 

  4. Keir L, Coward RJ (2011) Advances in our understanding of the pathogenesis of glomerular thrombotic microangiopathy. Pediatrics 26(4):523–533, Epub 2010

    Google Scholar 

  5. Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatrics 25(11):2231–2240, Epub 2010 Apr 2228

    Google Scholar 

  6. Bale JF Jr, Brasher C, Siegler RL (1980) CNS manifestations of the hemolytic–uremic syndrome. Relationship to metabolic alterations and prognosis. Am J Dis Child 134(9):869–872

    PubMed  Google Scholar 

  7. Obata F (2010) Influence of Escherichia coli shiga toxin on the mammalian central nervous system. Adv Appl Microbiol 71:1–19

    Article  PubMed  CAS  Google Scholar 

  8. Magnus T, Röther J, Simova O, Meier-Cillien M, Repenthin J, Möller F, Gbadamosi J, Panzer U, Wengenroth M, Hagel C, Kluge S, Stahl RK, Wegscheider K, Urban P, Eckert B, Glatzel M, Fiehler J, Gerloff C (2012) The neurological syndrome in adults during the 2011 northern German E. coli serotype O104:H4 outbreak. Brain 135(Pt 6):1850–1859

    Article  PubMed  Google Scholar 

  9. Weissenborn K, Donnerstag F, Kielstein JT, Heeren M, Worthmann H, Hecker H, Schmitt R, Schiffer M, Pasedag T, Schuppner R, Tryc AB, Raab P, Hartmann H, Ding XQ, Hafer C, Menne J, Schmidt BM, Bultmann E, Haller H, Dengler R, Lanfermann H, Giesemann AM (2012) Neurologic manifestations of E. coli infection-induced hemolytic–uremic syndrome in adults. Neurology 79(14):1466–1473

    Article  PubMed  Google Scholar 

  10. Upadhyaya K, Barwick K, Fishaut M, Kashgarian M, Siegel NJ (1980) The importance of nonrenal involvement in hemolytic–uremic syndrome. Pediatrics 65(1):115–120

    PubMed  CAS  Google Scholar 

  11. Steinborn M, Leiz S, Rudisser K, Griebel M, Harder T, Hahn H (2004) CT and MRI in haemolytic uraemic syndrome with central nervous system involvement: distribution of lesions and prognostic value of imaging findings. Pediatr Radiol 34(10):805–810

    Article  PubMed  Google Scholar 

  12. Ohlmann D, Hamann GF, Hassler M, Schimrigk K (1996) Involvement of the central nervous system in hemolytic uremic syndrome/thrombotic thrombocytopenic purpura. Nervenarzt 67(10):880–882

    Article  PubMed  CAS  Google Scholar 

  13. Ding XQ, Sun Y, Kruse B, Illies T, Zeumer H, Fiehler J, Lanfermann H (2009) Microstructural callosal abnormalities in normal-appearing brain of children with developmental delay detected with diffusion tensor imaging. Eur Radiol 19(6):1537–1543

    Article  PubMed  Google Scholar 

  14. Ding XQ, Fiehler J, Kohlschutter B, Wittkugel O, Grzyska U, Zeumer H, Ullrich K (2008) MRI abnormalities in normal-appearing brain tissue of treated adult PKU patients. J Magn Reson Imaging 27(5):998–1004

    Article  PubMed  Google Scholar 

  15. Ding XQ, Wittkugel O, Goebell E, Förster AF, Grzyska U, Zeumer H, Fiehler J (2008) Clinical applications of quantitative T2 determination: a complementary MRI tool for routine diagnosis of suspected myelination disorders. Eur J Paediatr Neurol 12(4):298–308, Epub 2007 Oct

    Article  PubMed  Google Scholar 

  16. Leppert IR, Almli CR, McKinstry RC, Mulkern RV, Pierpaoli C, Rivkin MJ, Pike GB (2009) T(2) relaxometry of normal pediatric brain development. J Magn Reson Imaging 29(2):258–267

    Article  PubMed  Google Scholar 

  17. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11(7):36–42

    Google Scholar 

  18. Nathanson S, Kwon T, Elmaleh M, Charbit M, Launay EA, Harambat J, Brun M, Ranchin B, Bandin F, Cloarec S, Bourdat-Michel G, Piètrement C, Champion G, Ulinski T, Deschênes G (2010) Acute neurological involvement in diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol 5(7):1218–1228

    Article  PubMed  CAS  Google Scholar 

  19. Donnerstag F, Ding X, Pape L, Bültmann E, Lücke T, Zajaczek J, Hoy L, Das AM, Lanfermann H, Ehrich J, Hartmann H (2012) Patterns in early diffusion-weighted MRI in children with haemolytic uraemic syndrome and CNS involvement. Eur Radiol 22(3):506–513

    Article  PubMed  Google Scholar 

  20. Ono J, Kodaka R, Imai K, Itagaki Y, Tanaka J, Inui K, Nagai T, Sakurai K, Harada K, Okada S (1993) Evaluation of myelination by means of the T2 value on magnetic resonance imaging. Brain Dev 15(6):433–438

    Article  PubMed  CAS  Google Scholar 

  21. Ding XQ, Kucinski T, Wittkugel O, Goebell E, Grzyska U, Görg M, Kohlschütter A, Zeumer H (2004) Normal brain maturation characterized with age-related T2 relaxation times: an attempt to develop a quantitative imaging measure for clinical use. Invest Radiol 39(12):740–746

    Article  PubMed  Google Scholar 

  22. Bick U, Ullrich K, Stöber U, Möller H, Schuierer G, Ludolph AC, Oberwittler C, Weglage J, Wendel U (1993) White matter abnormalities in patients with treated hyperphenylalaninaemia: magnetic resonance relaxometry and proton spectroscopy findings. Eur J Pediatr 152(12):1012–1020

    Article  PubMed  CAS  Google Scholar 

  23. Larocque MP, Syme A, Yahya A, Wachowicz K, Allalunis-Turner J, Fallone BG (2010) Monitoring T2 and ADC at 9.4 T following fractionated external beam radiation therapy in a mouse model. Phys Med Biol 55(5):1381–1393

    Article  PubMed  Google Scholar 

  24. Cieszanowski A, Anysz-Grodzicka A, Szeszkowski W, Kaczynski B, Maj E, Gornicka B, Grodzicki M, Grudzinski IP, Stadnik A, Krawczyk M, Rowinski O (2012) Characterization of focal liver lesions using quantitative techniques: comparison of apparent diffusion coefficient values and T2 relaxation times. Eur Radiol 22(11):2514–2524

    Article  PubMed  Google Scholar 

  25. Madler B, Drabycz SA, Kolind SH, Whittall KP, MacKay AL (2008) Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain. Magn Reson Imaging 26(7):874–888

    Article  PubMed  Google Scholar 

  26. Bauwens A, Bielaszewska M, Kemper B, Langehanenberg P, von Bally G, Reichelt R, Mulac D, Humpf HU, Friedrich AW, Kim KS, Karch H, Müthing J (2011) Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb Haemost 105(3):515–528

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi K, Funata N, Ikuta F, Sato S (2008) Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2. J Neuroinflammation 5:11

    Article  PubMed  Google Scholar 

  28. Goldstein J, Loidl CF, Creydt VP, Boccoli J, Ibarra C (2007) Intracerebroventricular administration of Shiga toxin type 2 induces striatal neuronal death and glial alterations: an ultrastructural study. Brain Res 1161:106–115

    Article  PubMed  CAS  Google Scholar 

  29. Tironi-Farinati C, Loidl CF, Boccoli J, Parma Y, Fernandez-Miyakawa ME, Goldstein J (2010) Intracerebroventricular Shiga toxin 2 increases the expression of its receptor globotriaosylceramide and causes dendritic abnormalities. J Neuroimmunol 222(1-2):48–61

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Weissenborn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissenborn, K., Bültmann, E., Donnerstag, F. et al. Quantitative MRI shows cerebral microstructural damage in hemolytic–uremic syndrome patients with severe neurological symptoms but no changes in conventional MRI. Neuroradiology 55, 819–825 (2013). https://doi.org/10.1007/s00234-013-1176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1176-3

Keywords

Navigation