Skip to main content

Advertisement

Log in

In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Diffusion tensor imaging (DTI) has been applied to characterize the pathological features of Alzheimer's disease (AD) in a mouse model, although little is known about whether these features are structure specific. Voxel-based analysis (VBA) and atlas-based analysis (ABA) are good complementary tools for whole-brain DTI analysis. The purpose of this study was to identify the spatial localization of disease-related pathology in an AD mouse model.

Methods

VBA and ABA quantification were used for the whole-brain DTI analysis of nine APP/PS1 mice and wild-type (WT) controls. Multiple scalar measurements, including fractional anisotropy (FA), trace, axial diffusivity (DA), and radial diffusivity (DR), were investigated to capture the various types of pathology. The accuracy of the image transformation applied for VBA and ABA was evaluated by comparing manual and atlas-based structure delineation using kappa statistics. Following the MR examination, the brains of the animals were analyzed for microscopy.

Results

Extensive anatomical alterations were identified in APP/PS1 mice, in both the gray matter areas (neocortex, hippocampus, caudate putamen, thalamus, hypothalamus, claustrum, amygdala, and piriform cortex) and the white matter areas (corpus callosum/external capsule, cingulum, septum, internal capsule, fimbria, and optic tract), evidenced by an increase in FA or DA, or both, compared to WT mice (p < 0.05, corrected). The average kappa value between manual and atlas-based structure delineation was approximately 0.8, and there was no significant difference between APP/PS1 and WT mice (p > 0.05). The histopathological changes in the gray matter areas were confirmed by microscopy studies. DTI did, however, demonstrate significant changes in white matter areas, where the difference was not apparent by qualitative observation of a single-slice histological specimen.

Conclusion

This study demonstrated the structure-specific nature of pathological changes in APP/PS1 mouse, and also showed the feasibility of applying whole-brain analysis methods to the investigation of an AD mouse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chevalier-Larsen E, Holzbaur ELF (2006) Axonal transport and neurodegenerative disease. Bba-Mol Basis Dis 1762(11–12):1094–1108. doi:10.1016/j.bbadis.2006.04.002

    Article  CAS  Google Scholar 

  2. Richner M, Bach G, West MJ (2009) Over expression of amyloid beta-protein reduces the number of neurons in the striatum of APPswe/PS1DeltaE9. Brain Research 1266:87–92. doi:10.1016/j.brainres.2009.02.025

    Article  PubMed  CAS  Google Scholar 

  3. Wang Q, Xu Y, Chen JC, Qin YY, Liu M, Liu Y, Xie MJ, Yu ZY, Zhu Z, Wang W (2012) Stromal cell-derived factor 1alpha decreases beta-amyloid deposition in Alzheimer's disease mouse model. Brain Research 1459:15–26. doi:10.1016/j.brainres.2012.04.011

    Article  PubMed  CAS  Google Scholar 

  4. Oishi K, Mielke MM, Albert M, Lyketsos CG, Mori S (2011) DTI analyses and clinical applications in Alzheimer's disease. J Alzheimers Dis 26(Suppl 3):287–296. doi:10.3233/JAD-2011-0007

    PubMed  Google Scholar 

  5. Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15(3):640–647. doi:10.1016/j.nbd.2003.12.003

    Article  PubMed  CAS  Google Scholar 

  6. Sun SW, Song SK, Harms MP, Lin SJ, Holtzman DM, Merchant KM, Kotyk JJ (2005) Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer's disease using magnetic resonance diffusion tensor imaging. Exp Neurol 191(1):77–85. doi:10.1016/j.expneurol.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  7. Davatzikos C (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1):17–20. doi:10.1016/j.neuroimage.2004.05.010

    Article  PubMed  Google Scholar 

  8. Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S (2009) Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer's disease participants. NeuroImage 46(2):486–499

    Article  PubMed  Google Scholar 

  9. Faria AV, Joel SE, Zhang Y, Oishi K, van Zjil PC, Miller MI, Pekar JJ, Mori S (2012) Atlas-based analysis of resting-state functional connectivity: evaluation for reproducibility and multi-modal anatomy-function correlation studies. NeuroImage 61(3):613–621. doi:10.1016/j.neuroimage.2012.03.078

    Article  PubMed  Google Scholar 

  10. Lebenberg J, Herard AS, Dubois A, Dhenain M, Hantraye P, Delzescaux T (2011) A combination of atlas-based and voxel-wise approaches to analyze metabolic changes in autoradiographic data from Alzheimer's mice. NeuroImage 57(4):1447–1457. doi:10.1016/j.neuroimage.2011.04.059

    Article  PubMed  CAS  Google Scholar 

  11. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S (2006) DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Programs Biomed 81(2):106–116. doi:10.1016/j.cmpb.2005.08.004

    Article  PubMed  Google Scholar 

  12. Andersson JL, Skare S (2002) A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI. NeuroImage 16(1):177–199. doi:10.1006/nimg.2001.1039

    Article  PubMed  Google Scholar 

  13. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22(1):139–152

    Article  PubMed  CAS  Google Scholar 

  14. Miller MI, Beg MF, Ceritoglu C, Stark C (2005) Increasing the power of functional maps of the medial temporal lobe by using large deformation diffeomorphic metric mapping. Proc Natl Acad Sci U S A 102(27):9685–9690. doi:10.1073/pnas.0503892102

    Article  PubMed  CAS  Google Scholar 

  15. Ceritoglu C, Oishi K, Li X, Chou MC, Younes L, Albert M, Lyketsos C, van Zijl PCM, Miller MI, Mori S (2009) Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. NeuroImage 47(2):618–627. doi:10.1016/j.neuroimage.2009.04.057

    Article  PubMed  Google Scholar 

  16. Xu D, Mori S, Shen D, van Zijl PC, Davatzikos C (2003) Spatial normalization of diffusion tensor fields. Magnet Resonance Med 50(1):175–182. doi:10.1002/mrm.10489

    Article  Google Scholar 

  17. Oishi K, Mori S, Donohue PK, Ernst T, Anderson L, Buchthal S, Faria A, Jiang H, Li X, Miller MI, van Zijl PC, Chang L (2011) Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage 56(1):8–20. doi:10.1016/j.neuroimage.2011.01.051

    Article  PubMed  Google Scholar 

  18. Faria AV, Hoon A, Stashinko E, Li X, Jiang H, Mashayekh A, Akhter K, Hsu J, Oishi K, Zhang J, Miller MI, van Zijl PC, Mori S (2011) Quantitative analysis of brain pathology based on MRI and brain atlases—applications for cerebral palsy. NeuroImage 54(3):1854–1861. doi:10.1016/j.neuroimage.2010.09.061

    Article  PubMed  Google Scholar 

  19. Faria AV, Landau B, O'Hearn KM, Li X, Jiang H, Oishi K, Zhang J, Mori S (2012) Quantitative analysis of gray and white matter in Williams syndrome. Neuroreport 23(5):283–289. doi:10.1097/WNR.0b013e3283505b62

    Article  PubMed  Google Scholar 

  20. Aggarwal M, Duan W, Hou Z, Rakesh N, Peng Q, Ross CA, Miller MI, Mori S, Zhang J (2012) Spatiotemporal mapping of brain atrophy in mouse models of Huntington's disease using longitudinal in vivo magnetic resonance imaging. NeuroImage 60(4):2086–2095. doi:10.1016/j.neuroimage.2012.01.141

    Article  PubMed  Google Scholar 

  21. Jack CR Jr, Marjanska M, Wengenack TM, Reyes DA, Curran GL, Lin J, Preboske GM, Poduslo JF, Garwood M (2007) Magnetic resonance imaging of Alzheimer's pathology in the brains of living transgenic mice: a new tool in Alzheimer's disease research. The Neuroscientist 13(1):38–48. doi:10.1177/1073858406295610

    Article  PubMed  CAS  Google Scholar 

  22. Teipel SJ, Wegrzyn M, Meindl T, Frisoni G, Bokde AL, Fellgiebel A, Filippi M, Hampel H, Kloppel S, Hauenstein K, Ewers M (2012) Anatomical MRI and DTI in the diagnosis of Alzheimer's disease: a European multicenter study. J Alzheimers Dis 31(Suppl 3):S33–S47. doi:10.3233/JAD-2012-112118

    PubMed  Google Scholar 

  23. Kiuchi K, Morikawa M, Taoka T, Nagashima T, Yamauchi T, Makinodan M, Norimoto K, Hashimoto K, Kosaka J, Inoue Y, Inoue M, Kichikawa K, Kishimoto T (2009) Abnormalities of the uncinate fasciculus and posterior cingulate fasciculus in mild cognitive impairment and early Alzheimer's disease: a diffusion tensor tractography study. Brain Research 1287:184–191. doi:10.1016/j.brainres.2009.06.052

    Article  PubMed  CAS  Google Scholar 

  24. Kerbler GM, Hamlin AS, Pannek K, Kurniawan ND, Keller MD, Rose SE, Coulson EJ (2012) Diffusion-weighted magnetic resonance imaging detection of basal forebrain cholinergic degeneration in a mouse model. NeuroImage 66C:133–141. doi:10.1016/j.neuroimage.2012.10.075

    PubMed  Google Scholar 

  25. Sandson TA, Felician O, Edelman RR, Warach S (1999) Diffusion-weighted magnetic resonance imaging in Alzheimer's disease. Dement Geriatr Cogn Disord 10(2):166–171

    Article  PubMed  CAS  Google Scholar 

  26. Sundgren PC, Dong Q, Gomez-Hassan D, Mukherji SK, Maly P, Welsh R (2004) Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology 46(5):339–350. doi:10.1007/s00234-003-1114-x

    Article  PubMed  CAS  Google Scholar 

  27. Kilborn SH, Trudel G, Uhthoff H (2002) Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemp Topics Lab Ani Sci /Am Assoc Lab An Sci 41(5):21–26

    CAS  Google Scholar 

  28. Delatour B, Guegan M, Volk A, Dhenain M (2006) In vivo MRI and histological evaluation of brain atrophy in APP/PS1 transgenic mice. Neurobiol Aging 27(6):835–847. doi:10.1016/j.neurobiolaging.2005.04.011

    Article  PubMed  CAS  Google Scholar 

  29. Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC (2002) Diffusion tensor MR imaging of the brain and white matter tractography. AJR Am J Roentgenol 178(1):3–16

    Article  PubMed  Google Scholar 

  30. Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Hevelone ND, Rosas HD (2005) Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci U S A 102(34):12212–12217. doi:10.1073/pnas.0407259102

    Article  PubMed  CAS  Google Scholar 

  31. Thiessen JD, Glazner KA, Nafez S, Schellenberg AE, Buist R, Martin M, Albensi BC (2010) Histochemical visualization and diffusion MRI at 7 Tesla in the TgCRND8 transgenic model of Alzheimer's disease. Brain Struc Func 215(1):29–36. doi:10.1007/s00429-010-0271-z

    Article  CAS  Google Scholar 

  32. Maheswaran S, Barjat H, Rueckert D, Bate ST, Howlett DR, Tilling L, Smart SC, Pohlmann A, Richardson JC, Hartkens T, Hill DL, Upton N, Hajnal JV, James MF (2009) Longitudinal regional brain volume changes quantified in normal aging and Alzheimer's APP x PS1 mice using MRI. Brain Res 1270:19–32. doi:10.1016/j.brainres.2009.02.045

    Article  PubMed  CAS  Google Scholar 

  33. Mueggler T, Meyer-Luehmann M, Rausch M, Staufenbiel M, Jucker M, Rudin M (2004) Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur J Neurosci 20(3):811–817. doi:10.1111/j.1460-9568.2004.03534.x

    Article  PubMed  Google Scholar 

  34. Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed 15(7–8):543–552. doi:10.1002/nbm.784

    Article  PubMed  CAS  Google Scholar 

  35. Schmitz C, Rutten BP, Pielen A, Schafer S, Wirths O, Tremp G, Czech C, Blanchard V, Multhaup G, Rezaie P, Korr H, Steinbusch HW, Pradier L, Bayer TA (2004) Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. Am J Pathol 164(4):1495–1502. doi:10.1016/S0002-9440(10)63235-X

    Article  PubMed  Google Scholar 

  36. Unrath A, Klose U, Grodd W, Ludolph AC, Kassubek J (2008) Directional colour encoding of the human thalamus by diffusion tensor imaging. Neurosci Lett 434(3):322–327. doi:10.1016/j.neulet.2008.02.013

    Article  PubMed  CAS  Google Scholar 

  37. Duan Y, Li X, Xi Y (2007) Thalamus segmentation from diffusion tensor magnetic resonance imaging. Int J Biomed Imaging 2007:90216. doi:10.1155/2007/90216

    Article  PubMed  Google Scholar 

  38. Solano-Castiella E, Anwander A, Lohmann G, Weiss M, Docherty C, Geyer S, Reimer E, Friederici AD, Turner R (2010) Diffusion tensor imaging segments the human amygdala in vivo. NeuroImage 49(4):2958–2965. doi:10.1016/j.neuroimage.2009.11.027

    Article  PubMed  Google Scholar 

  39. Ding AY, Li Q, Zhou IY, Ma SJ, Tong G, McAlonan GM, Wu EX (2013) MR diffusion tensor imaging detects rapid microstructural changes in amygdala and hippocampus following fear conditioning in mice. PLoS One 8(1):e51704. doi:10.1371/journal.pone.0051704

    Article  PubMed  CAS  Google Scholar 

  40. Fellgiebel A, Wille P, Muller MJ, Winterer G, Scheurich A, Vucurevic G, Schmidt LG, Stoeter P (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement Geriatr Cogn Disord 18(1):101–108. doi:10.1159/000077817

    Article  PubMed  Google Scholar 

  41. Dai H, Yin D, Hu C, Morelli JN, Hu S, Yan X, Xu D (2013) Whole-brain voxel-based analysis of diffusion tensor MRI parameters in patients with primary open angle glaucoma and correlation with clinical glaucoma stage. Neuroradiology 55(2):233–243. doi:10.1007/s00234-012-1122-9

    Article  PubMed  Google Scholar 

  42. Yin D, Yan X, Fan M, Hu Y, Men W, Sun L, Song F (2013) Secondary degeneration detected by combining VBM and TBSS in subcortical strokes with different outcomes in hand function. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A3410

    Google Scholar 

  43. Zerbi V, Kleinnijenhuis M, Fang X, Jansen D, Veltien A, Van Asten J, Timmer N, Dederen PJ, Kiliaan AJ, Heerschap A (2013) Gray and white matter degeneration revealed by diffusion in an Alzheimer mouse model. Neurobiol Aging 34(5):1440–1450. doi:10.1016/j.neurobiolaging.2012.11.017

    Article  PubMed  Google Scholar 

  44. Sturchler-Pierrat C, Abramowski D, Duke M, Wiederhold KH, Mistl C, Rothacher S, Ledermann B, Burki K, Frey P, Paganetti PA, Waridel C, Calhoun ME, Jucker M, Probst A, Staufenbiel M, Sommer B (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc Natl Acad Sci U S A 94(24):13287–13292

    Article  PubMed  CAS  Google Scholar 

  45. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225(4667):1168–1170

    Article  PubMed  CAS  Google Scholar 

  46. Langston RF, Stevenson CH, Wilson CL, Saunders I, Wood ER (2010) The role of hippocampal subregions in memory for stimulus associations. Behav Brain Res 215(2):275–291. doi:10.1016/j.bbr.2010.07.006

    Article  PubMed  Google Scholar 

  47. Lim HK, Hong SC, Jung WS, Ahn KJ, Won WY, Hahn C, Kim IS, Lee CU (2012) Automated hippocampal subfield segmentation in amnestic mild cognitive impairments. Dement Geriatr Cogn Disord 33(5):327–333. doi:10.1159/000339588

    Article  PubMed  Google Scholar 

  48. Nagy Z, Jobst KA, Esiri MM, Morris JH, King EM, MacDonald B, Litchfield S, Barnetson L, Smith AD (1996) Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer's disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia 7(2):76–81

    PubMed  CAS  Google Scholar 

  49. Canu E, McLaren DG, Fitzgerald ME, Bendlin BB, Zoccatelli G, Alessandrini F, Pizzini FB, Ricciardi GK, Beltramello A, Johnson SC, Frisoni GB (2010) Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer's disease. J Alzheimers Dis 19(3):963–976. doi:10.3233/JAD-2010-1295

    PubMed  Google Scholar 

  50. Harms MP, Kotyk JJ, Merchant KM (2006) Evaluation of white matter integrity in ex vivo brains of amyloid plaque-bearing APPsw transgenic mice using magnetic resonance diffusion tensor imaging. Exp Neurol 199(2):408–415. doi:10.1016/j.expneurol.2006.01.002

    Article  PubMed  Google Scholar 

  51. Oishi K, Akhter K, Mielke M, Ceritoglu C, Zhang J, Jiang H, Li X, Younes L, Miller MI, van Zijl PC, Albert M, Lyketsos CG, Mori S (2011) Multi-modal MRI analysis with disease-specific spatial filtering: initial testing to predict mild cognitive impairment patients who convert to Alzheimer's disease. Front Neurol 2:54. doi:10.3389/fneur.2011.00054

    Article  PubMed  Google Scholar 

  52. Pievani M, Agosta F, Pagani E, Canu E, Sala S, Absinta M, Geroldi C, Ganzola R, Frisoni GB, Filippi M (2010) Assessment of white matter tract damage in mild cognitive impairment and Alzheimer's disease. Human Brain Mapping 31(12):1862–1875. doi:10.1002/hbm.20978

    Article  PubMed  Google Scholar 

  53. Nowrangi MA, Lyketsos CG, Leoutsakos JM, Oishi K, Albert M, Mori S, Mielke MM (2012) Longitudinal, region-specific course of diffusion tensor imaging measures in mild cognitive impairment and Alzheimer's disease. Alzheimer's Dementia. doi:10.1016/j.jalz.2012.05.2186

    PubMed  Google Scholar 

  54. Tighe SK, Oishi K, Mori S, Smith GS, Albert M, Lyketsos CG, Mielke MM (2012) Diffusion tensor imaging of neuropsychiatric symptoms in mild cognitive impairment and Alzheimer's dementia. J Neuropsychiatr Clin Neurosci 24(4):484–488. doi:10.1176/appi.neuropsych.11120375

    Article  Google Scholar 

  55. Mielke MM, Okonkwo OC, Oishi K, Mori S, Tighe S, Miller MI, Ceritoglu C, Brown T, Albert M, Lyketsos CG (2012) Fornix integrity and hippocampal volume predict memory decline and progression to Alzheimer's disease. Alzheimer's & Dementia 8(2):105–113. doi:10.1016/j.jalz.2011.05.2416

    Article  Google Scholar 

  56. Thillainadesan S, Wen W, Zhuang L, Crawford J, Kochan N, Reppermund S, Slavin M, Trollor J, Brodaty H, Sachdev P (2012) Changes in mild cognitive impairment and its subtypes as seen on diffusion tensor imaging. International Psychogeriatrics/IPA 24(9):1483–1493. doi:10.1017/S1041610212000270

    Article  PubMed  Google Scholar 

  57. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17(3):1429–1436

    Article  PubMed  Google Scholar 

  58. Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26(1):132–140. doi:10.1016/j.neuroimage.2005.01.028

    Article  PubMed  Google Scholar 

  59. Sun SW, Liang HF, Le TQ, Armstrong RC, Cross AH, Song SK (2006) Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroImage 32(3):1195–1204. doi:10.1016/j.neuroimage.2006.04.212

    Article  PubMed  Google Scholar 

  60. Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. NeuroImage 13(6 Pt 1):1174–1185. doi:10.1006/nimg.2001.0765

    Article  PubMed  CAS  Google Scholar 

  61. Sotak CH (2002) The role of diffusion tensor imaging in the evaluation of ischemic brain injury—a review. NMR Biomed 15(7–8):561–569. doi:10.1002/nbm.786

    Article  PubMed  Google Scholar 

  62. Fazekas F, Kleinert R, Offenbacher H, Payer F, Schmidt R, Kleinert G, Radner H, Lechner H (1991) The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR Am J Neuroradiol 12(5):915–921

    PubMed  CAS  Google Scholar 

  63. de la Torre JC (2002) Alzheimer disease as a vascular disorder: nosological evidence. Stroke. J Cerebral Circulation 33(4):1152–1162

    Article  Google Scholar 

  64. Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64(9):1563–1572. doi:10.1212/01.WNL.0000159743.08996.99

    Article  PubMed  CAS  Google Scholar 

  65. Hawkes CA, Gatherer M, Sharp MM, Dorr A, Yuen HM, Kalaria R, Weller RO, Carare RO (2013) Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-beta from the mouse brain. Aging Cell 12(2):224–236. doi:10.1111/acel.12045

    Article  PubMed  CAS  Google Scholar 

  66. Moretti DV, Pievani M, Fracassi C, Binetti G, Rosini S, Geroldi C, Zanetti O, Rossini PM, Frisoni GB (2009) Increase of theta/gamma and alpha3/alpha2 ratio is associated with amygdalo-hippocampal complex atrophy. J Alzheimers Dis 17(2):349–357. doi:10.3233/JAD-2009-1059

    PubMed  CAS  Google Scholar 

  67. Bueno-Junior LS, Lopes-Aguiar C, Ruggiero RN, Romcy-Pereira RN, Leite JP (2012) Muscarinic and nicotinic modulation of thalamo-prefrontal cortex synaptic plasticity [corrected] in vivo. PLoS One 7(10):e47484. doi:10.1371/journal.pone.0047484

    Article  PubMed  CAS  Google Scholar 

  68. Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189(4):573–591. doi:10.1002/cne.901890402

    Article  PubMed  CAS  Google Scholar 

  69. Andersen DL (1968) Some striatal connections to the claustrum. Exp Neurol 20(2):261–267

    Article  PubMed  CAS  Google Scholar 

  70. Morys J, Bobinski M, Wegiel J, Wisniewski HM, Narkiewicz O (1996) Alzheimer's disease severely affects areas of the claustrum connected with the entorhinal cortex. J Fur Hirnforschung 37(2):173–180

    CAS  Google Scholar 

  71. Wesson DW, Borkowski AH, Landreth GE, Nixon RA, Levy E, Wilson DA (2011) Sensory network dysfunction, behavioral impairments, and their reversibility in an Alzheimer's beta-amyloidosis mouse model. J Neurosci 31(44):15962–15971. doi:10.1523/JNEUROSCI.2085-11.2011

    Article  PubMed  CAS  Google Scholar 

  72. Jiang Y, Johnson GA (2010) Microscopic diffusion tensor imaging of the mouse brain. NeuroImage 50(2):465–471. doi:10.1016/j.neuroimage.2009.12.057

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Mary McAllister for help with manuscript editing. The “Five-twelfth” National Science and Technology Support Program (2011BAI08B10) and the Natural Science Foundation of China (No. 81171308, No. 30570531, and No. 30870702) supported this research.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenichi Oishi or Wen-Zhen Zhu.

Additional information

W.-Z. Zhu and K. Oishi contributed equally to the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 216 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, YY., Li, MW., Zhang, S. et al. In vivo quantitative whole-brain diffusion tensor imaging analysis of APP/PS1 transgenic mice using voxel-based and atlas-based methods. Neuroradiology 55, 1027–1038 (2013). https://doi.org/10.1007/s00234-013-1195-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1195-0

Keywords

Navigation