Skip to main content

Advertisement

Log in

Imaging the premature brain: ultrasound or MRI?

  • Invited Review
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Neuroimaging of preterm infants has become part of routine clinical care, but the question is often raised on how often cranial ultrasound should be done and whether every high risk preterm infant should at least have one MRI during the neonatal period. An increasing number of centres perform an MRI either at discharge or around term equivalent age, and a few centres have access to a magnet in or adjacent to the neonatal intensive care unit and are doing sequential MRIs. In this review, we try to discuss when best to perform these two neuroimaging techniques and the additional information each technique may provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Groenendaal Termote JUM, Heide-Jalving M, van Haastert IC, de Vries LS (2010) Neonatal complications and long-term outcome of preterm neonates from 1991 to 2006: what have we gained? Acta Paediatr 99:354–358

    Article  Google Scholar 

  2. Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES (2012) Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 345

  3. Maalouf EF, Duggan PJ, Counsell SJ, Rutherford MA, Cowan F, Azzopardi D, Edwards AD (2001) Comparison of findings on cranial ultrasound and magnetic resonance imaging in preterm infants. Pediatrics 107:719–727

    Article  PubMed  CAS  Google Scholar 

  4. Inder TE, Wells SJ, Mogridge NB, Spencer C, Volpe JJ (2003) Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 143:171–179

    Article  PubMed  Google Scholar 

  5. Miller SP, Cozzio CC, Goldstein RB, Ferriero DM, Partridge JC, Vigneron DB, Barkovich AJ (2003) Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings. AJNR Am J Neuroradiol 24:1661–1669

    PubMed  Google Scholar 

  6. Debillon T, N’Guyen S, Muet A, Quere MP, Moussaly F, Roze JC (2003) Limitations of ultrasonography for diagnosing white matter damage in preterm infants. Arch Dis Child Fetal Neonatal Ed 88:F275–F279

    Article  PubMed  CAS  Google Scholar 

  7. Leijser LM, Liauw L, Veen S, de Boer IP, Walther FJ, van Wezel-Meijler G (2008) Comparing brain white matter on sequential cranial ultrasound and MRI in very preterm infants. Neuroradiology 50:799–811

    Article  PubMed  Google Scholar 

  8. Hamrick SE, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, Piecuch R, Ferriero DM (2004) Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr 145:593–599

    Article  PubMed  Google Scholar 

  9. Haastert IC, Groenendaal F, Uiterwaal CSPM, Termote JUM, van der Heide-Jalving M, Eijsermans MJC, Gorter JW, Helders PJM, Jongmans MJ, de Vries LS (2011) Decreasing incidence and severity of cerebral palsy in prematurely born children. J Pediatr 159:86–91

    Article  PubMed  Google Scholar 

  10. Pearce R, Baardsnes J (2012) Term MRI for small preterm babies: do parents really want to know and why has nobody asked them? Acta Paediatr 101:1013–1015

    Article  PubMed  Google Scholar 

  11. Kidokoro H, Neil JJ, Inder TE (2013). New MR imaging assessment tool to define brain abnormalities in very preterm infants at term. AJNR Am J Neuroradiol. doi:10.3174/ajnr.A3521

  12. Correa F, Enríquez G, Rosselló J, Lucaya J, Piqueras J, Aso C, Vázquez E, Ortega A, Gallart A (2004) Posterior fontanelle sonography: an acoustic window into the neonatal brain. AJNR Am J Neuroradiol 25:1274–1282

    PubMed  Google Scholar 

  13. Vasileiadis GT, Gelman N, Han VK, Williams LA, Mann R, Bureau Y, Thompson RT (2004) Uncomplicated IVH is followed by reduced cortical volume at near-term age. Pediatrics 114:e367–e372

    Article  PubMed  Google Scholar 

  14. Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M (2006) Grades I–II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. J Pediatr 149:169

    Article  PubMed  Google Scholar 

  15. Vavasseur C, Slevin M, Donoghue V, Murphy JF (2007) Effect of low grade IVH on developmental outcome in preterm infants at two years. J Pediatr 151(2):e6

    PubMed  Google Scholar 

  16. Del Bigio MR (2011) Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 134:1344–1361

    Article  PubMed  Google Scholar 

  17. Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    Article  PubMed  Google Scholar 

  18. O'Shea TM, Allred EN, Kuban KC, Hirtz D, Specter B, Durfee S, Paneth N, Leviton A, ELGAN Study Investigators (2012) Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J Child Neurol 27:22–29

    Article  PubMed  Google Scholar 

  19. Beaino G, Khoshnood B, Kaminski M, Pierrat V, Marret S, Matis J, Ledésert B, Thiriez G, Fresson J, Rozé JC, Zupan-Simunek V, Arnaud C, Burguet A, Larroque B, Bréart G, Ancel PY, EPIPAGE Study Group (2010) Predictors of cerebral palsy in very preterm infants: the EPIPAGE prospective population-based cohort study. Dev Med Child Neurol 52:e119–e125

    Article  PubMed  Google Scholar 

  20. Kuban K, Sanocka U, Leviton A et al (1999) White matter disorders of prematurity: association with intraventricular hemorrhage and ventriculomegaly. The Developmental Epidemiology Network. J Pediatr 134:539–546

    Article  PubMed  CAS  Google Scholar 

  21. Sherlock RL, Anderson PJ, Doyle LW, Victorian Infant Collaborative Study Group (2005) Neurodevelopmental sequelae of intraventricular haemorrhage at 8 years of age in a regional cohort of ELBW/very preterm infants. Early Hum Dev 81:909–916

    Article  Google Scholar 

  22. Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R, Research Network NICHD (2008) Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 121:e1167–e1177

    Article  PubMed  Google Scholar 

  23. de Vries LS, Roelants-van Rijn AM, Rademaker KJ, Van Haastert IC, Beek FJ, Groenendaal F (2001) Unilateral parenchymal haemorrhagic infarction in the preterm infant. Eur J Paediatr Neurol 5:139–149

    Article  PubMed  Google Scholar 

  24. de Vries LS, Groenendaal F, Eken P, Rademaker KJ, Meiners LC (1999) Asymmetrical myelination of the posterior limb of the internal capsule: an early predictor of hemiplegia. Neuropediatrics 30:314–319

    Article  PubMed  Google Scholar 

  25. de Vries LS, van Haastert IC, Benders MJ, Groenendaal F (2011) Myth: cerebral palsy cannot be predicted by neonatal brain imaging. Semin Fetal Neonatal Med 16:279–287

    Article  PubMed  Google Scholar 

  26. Cowan FM, de Vries LS (2005) The internal capsule in neonatal imaging. Semin Fetal Neonatal Med 10:461–474

    Article  PubMed  Google Scholar 

  27. Steggerda SJ, Leijser LM, Wiggers-de Bruïne FT, van der Grond J, Walther FJ, van Wezel-Meijler G (2009) Cerebellar injury in preterm infants: incidence and findings on US and MR images. Radiology 252:190–199

    Article  PubMed  Google Scholar 

  28. Miall LS, Cornette LG, Tanner SF, Arthur RJ, Levene MI (2003) Posterior fossa abnormalities seen on magnetic resonance brain imaging in a cohort of newborn infants. J Perinatol 23:396–403

    Article  PubMed  Google Scholar 

  29. Limperopoulos C, Benson CB, Bassan H, Disalvo DN, Kinnamon DD, Moore M, Ringer SA, Volpe JJ, du Plessis AJ (2005) Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics 116:717–724

    Article  PubMed  Google Scholar 

  30. Steggerda SJ; De Bruïne FT; van den Berg-Huysmans AA, Rijken M; Leijser LM, Walther FJ, van Wezel-Meijler G (2013). Small cerebellar hemorrhage in preterm infants: perinatal and postnatal factors and outcome. Cerebellum. doi:10.1007/s12311-013-0487-6

  31. Tam EW, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, Ferriero DM, Barkovich AJ (2011) Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr 158:366–371

    Article  PubMed  Google Scholar 

  32. Tam EW, Rosenbluth G, Rogers EE, Ferriero DM, Glidden D, Goldstein RB, Glass HC, Piecuch RE, Barkovich AJ (2011) Cerebellar hemorrhage on magnetic resonance imaging in preterm newborns associated with abnormal neurologic outcome. J Pediatr 158:245–250

    Article  PubMed  Google Scholar 

  33. Limperopoulos C, Bassan H, Gauvreau K, Robertson RL Jr, Sullivan NR, Benson CB, Avery L, Stewart J, Soul JS, Ringer SA, Volpe JJ, duPlessis AJ (2007) Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics 120:584–593

    Article  PubMed  Google Scholar 

  34. van Wezel-Meijler G et al (2011) Ultrasound detection of white matter injury in very preterm neonates: practical implications. Dev Med Child Neuro 53(4):29–34

    Article  Google Scholar 

  35. Niwa T, de Vries LS, Benders MJ, Takahara T, Nikkels PG, Groenendaal F (2011) Punctate white matter lesions in infants: new insights using susceptibility-weighted imaging. Neuroradiology 53:669–679

    Article  PubMed  Google Scholar 

  36. de Bruïne FT, van den Berg-Huysmans AA, Leijser LM, Rijken M, Steggerda SJ, van der Grond J, van Wezel-Meijler G (2011) Clinical implications of MR imaging findings in the white matter in very preterm infants: a 2-year follow-up study. Radiology 261:899–906

    Article  PubMed  Google Scholar 

  37. Jeon TY, Kim JH, Yoo SY, Eo H, Kwon JY, Lee J, Lee M, Chang YS, Park WS (2012) Neurodevelopmental outcomes in preterm infants: comparison of infants with and without diffuse excessive high signal intensity on MR images at near-term-equivalent age. Radiology 263:518–526

    Article  PubMed  Google Scholar 

  38. Counsell SJ, Allsop JM, Harrison MC, Larkman DJ, Kennea NL, Kapellou O, Cowan FM, Hajnal JV, Edwards AD, Rutherford MA (2003) Diffusion-weighted imaging of the brain in preterm infants with focal and diffuse white matter abnormality. Pediatrics 112:1–7

    Article  PubMed  Google Scholar 

  39. Dyet LE, Kennea N, Counsell SJ, Maalouf EF, Ajayi-Obe M, Duggan PJ, Harrison M, Allsop JM, Hajnal J, Herlihy AH, Edwards B, Laroche S, Cowan FM, Rutherford MA, Edwards AD (2006) Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment. Pediatrics 118:536–548

    Article  PubMed  Google Scholar 

  40. Skiöld B, Vollmer B, Böhm B, Hallberg B, Horsch S, Mosskin M, Lagercrantz H, Ådén U, Blennow M (2012) Neonatal magnetic resonance imaging and outcome at age 30 months in extremely preterm infants. J Pediatr 160:559–566

    Article  PubMed  Google Scholar 

  41. Kidokoro H, Anderson PJ, Doyle LW, Neil JJ, Inder TE (2011) High signal intensity on T2-weighted MR imaging at term equivalent age in preterm infants does not predict 2 year developmental outcomes. AJNR; 32:2005–2010

    Article  PubMed  CAS  Google Scholar 

  42. Hart A, Whitby E, Wilkinson S, Alladi S, Paley M, Smith M (2011) Neuro-developmental outcome at 18 months in premature infants with diffuse excessive high signal intensity on MR imaging of the brain. Pediatr Radiol 41:1284–1292

    Article  PubMed  Google Scholar 

  43. Krishnan ML, Dyet LE, Boardman JP, Kapellou O, Allsop JM, Cowan F, Edwards AD, Rutherford MA, Counsell SJ (2007) Relationship between white matter apparent diffusion coefficients in preterm infants at term-equivalent age and developmental outcome at 2 years. Pediatrics 120:e604–e609

    Article  PubMed  Google Scholar 

  44. De Vries LS, Van Haastert IL, Rademaker KJ, Koopman C, Groenendaal F (2004) Ultrasound abnormalities preceding cerebral palsy in high-risk preterm infants. J Pediatr 144:815–820

    PubMed  Google Scholar 

  45. Pierrat V, Duquennoy C, van Haastert IC, Ernst M, Guilley N, de Vries LS (2001) Ultrasound diagnosis and neurodevelopmental outcome of localised and extensive cystic periventricular leucomalacia. Arch Dis Child Fetal Neonatal Ed 84:F151–F156

    Article  PubMed  CAS  Google Scholar 

  46. Ment LR, Bada HS, Barnes P, Grant PE, Hirtz D, Papile LA, Pinto-Martin J, Rivkin M, Slovis TL (2002) Practice parameter: neuroimaging of the neonate: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 58:1726–1738

    Article  PubMed  CAS  Google Scholar 

  47. Verboon-Maciolek MA et al (2012) Development of cystic periventricular leukomalacia in newborn infants after rotavirus infection. J Pediatr 160:165–8.e1

    Article  PubMed  Google Scholar 

  48. Verboon-Maciolek MA, Groenendaal F, Hahn CD, Hellmann J, van Loon AM, Boivin G, de Vries LS (2008) Human parechovirus causes encephalitis with white matter injury in neonates. Ann Neurol 64:266–273

    Article  PubMed  Google Scholar 

  49. Verboon-Maciolek MA, Utrecht FG, Cowan F, Govaert P, van Loon AM, de Vries LS (2006) White matter damage in neonatal enterovirus meningoencephalitis. Neurology 66:1267–1269

    Article  PubMed  CAS  Google Scholar 

  50. de Vries LS, Groenendaal F, Eken P, van Haastert IC, Rademaker KJ, Meiners LC (1997) Infarcts in the vascular distribution of the middle cerebral artery in preterm and fullterm infants. Neuropediatrics 28:88–96

    Article  PubMed  Google Scholar 

  51. Abels L, Lequin M, Govaert P (2006) Sonographic templates of newborn perforator stroke. Pediatr Radiol 36:663–669

    Article  PubMed  Google Scholar 

  52. Benders MJ, Groenendaal F, De Vries LS (2009) Preterm arterial ischemic stroke. Semin Fetal Neonatal Med 14:272–277

    Article  PubMed  CAS  Google Scholar 

  53. Ecury-Goossen GM, Raets MM, Lequin M, Feijen-Roon M, Govaert P, Dudink J. (2013) Risk factors, clinical presentation, and neuroimaging findings of neonatal perforator stroke. Stroke. doi:10.1161/STROKEAHA.113.001064

  54. Cowan F, Mercuri E, Groenendaal F, Bassi L, Ricci D, Rutherford M, de Vries LS (2005) Does cranial ultrasound imaging identify arterial cerebral infarction in term neonates? Arch Dis Child Fetal Neonatal Ed 90:F252–F256

    Article  PubMed  CAS  Google Scholar 

  55. Valkama AM, Pääkkö EL, Vainionpää LK, Lanning FP, Ilkko EA, Koivisto ME (2000) Magnetic resonance imaging at term and neuromotor outcome in preterm infants. Acta Paediatr 89:348–355

    Article  PubMed  CAS  Google Scholar 

  56. Mirmiran M, Barnes PD, Keller K, Constantinou JC, Fleisher BE, Hintz SR, Ariagno RL (2004) Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 114:992–998

    Article  PubMed  Google Scholar 

  57. Woodward LJ, Anderson PJ, Austin NC, Howard K, Inder TE (2006) Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N Engl J Med 355:685–694

    Article  PubMed  CAS  Google Scholar 

  58. Rosenbaum PL, Palisano RJ, Bartlett DJ, Galuppi BE, Russell DJ (2008) Development of the gross motor function classification system for cerebral palsy. Dev Med Child Neurol 50:249e53

    Google Scholar 

  59. Horsch S, Skiöld B, Hallberg B, Nordell B, Nordell A, Mosskin M, Lagercrantz H, Adén U, Blennow M (2010) Cranial ultrasound and MRI at term age in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed 95:F310–F314

    Article  PubMed  CAS  Google Scholar 

  60. Munck P, Haataja L, Maunu J et al (2010) Cognitive outcome at 2 years of age in Finnish infants with very low birth weight born between 2001 and 2006. Acta Paediatrica 99(3):359–366

    Article  PubMed  CAS  Google Scholar 

  61. Setänen S, Haataja L, Parkkola R, Lind A, Lehtonen L (2013) Predictive value of neonatal brain MRI on the neurodevelopmental outcome of preterm infants by 5 years of age. Acta Paediatr 102:492–497

    Article  PubMed  Google Scholar 

  62. Iwata S, Nakamura T, Hizume E, Kihara H, Takashima S, Matsuishi T, Iwata O (2012) Qualitative brain MRI at term and cognitive outcomes at 9 years after very preterm birth. Pediatrics 129:e1138–e1147

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. de Vries.

Additional information

This article is part of the special supplement “The Premature Brain”—Guest Editor: Charles Raybaud

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, L.S., Benders, M.J.N.L. & Groenendaal, F. Imaging the premature brain: ultrasound or MRI?. Neuroradiology 55 (Suppl 2), 13–22 (2013). https://doi.org/10.1007/s00234-013-1233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1233-y

Keywords

Navigation