Skip to main content

Advertisement

Log in

Utility of susceptibility-weighted imaging and arterial spin perfusion imaging in pediatric brain arteriovenous shunting

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The objectives of the study are to investigate the application of susceptibility-weighted imaging (SWI) and arterial spin labeling (ASL) imaging in the assessment of shunting and the draining veins in pediatric patients with arteriovenous shunting and compare the utility of SWI and ASL with conventional MR and digital subtraction angiography (DSA).

Methods

This study is a retrospective study of 19 pediatric patients with arteriovenous shunting on brain MRI who were also evaluated with DSA. We assessed the ability of conventional MRI sequences, susceptibility magnitude images, phase-filtered SWI images, and pulsed ASL images in the detection of arteriovenous (AV) shunting, number of draining veins and drainage pathways in comparison to DSA.

Results

The mean number of detected draining veins on DSA (3.63) was significantly higher compared to SWI phase-filtered image (mean = 2.72), susceptibility magnitude image (mean = 2.92), ASL (mean = 1.76) and conventional MRI (2.47) (p < 0.05). Pairwise comparison of DSA difference scores (i.e., difference between MR modalities in the number of missed draining veins) revealed no difference between the MR modalities (p > 0.05). ASL was the only method that correctly identified superficial and deep venous drainage in all patients. Regarding detection of shunting, ASL, SWI phase-filtered, and magnitude images demonstrated shunting in 100, 83, and 84 % of patients, respectively.

Conclusion

SWI depicts a higher number of draining vein compared to conventional MR pulse sequences. ASL is a sensitive approach in showing 100 % sensitivity in the detection of AV shunting and in the diagnosis of the pattern of venous drainage. The present findings suggest the added utility of both SWI and ASL in the assessment of AV shunting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Starke RM, Komotar RJ, Hwang BY, Fischer LE, Garrett MC, Otten ML, Connolly ES (2009) Treatment guidelines for cerebral arteriovenous malformation microsurgery. Br J Neurosurg 23(4):376–386

    Article  PubMed  Google Scholar 

  2. Soderman M, Andersson T, Karlsson B, Wallace MC, Edner G (2003) Management of patients with brain arteriovenous malformations. Eur J Radiol 46(3):195–205

    Article  PubMed  Google Scholar 

  3. Starke RM, Komotar RJ, Hwang BY, Fischer LE, Otten ML, Merkow MB, Garrett MC, Isaacson SR, Connolly ES Jr (2008) A comprehensive review of radiosurgery for cerebral arteriovenous malformations: outcomes, predictive factors, and grading scales. Stereotact Funct Neurosurg 86(3):191–199

    Article  PubMed  Google Scholar 

  4. Geibprasert S, Pongpech S, Jiarakongmun P, Shroff MM, Armstrong DC, Krings T (2010) Radiologic assessment of brain arteriovenous malformations: what clinicians need to know? Radiographics 30(2):483–501

    Article  PubMed  Google Scholar 

  5. Gupta V, Chugh M, Walia BS, Vaishya S, Jha AN (2008) Use of CT angiography for anatomic localization of arteriovenous malformation Nidal components. AJNR Am J Neuroradiol 29(10):1837–1840

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka H, Numaguchi Y, Konno S, Shrier DA, Shibata DK, Patel U (1997) Initial experience with helical CT and 3D reconstruction in therapeutic planning of cerebral AVMs: comparison with 3D time-of-flight MRA and digital subtraction angiography. J Comput Assist Tomogr 21(5):811–817

    Article  PubMed  CAS  Google Scholar 

  7. Tsuchiya K, Katase S, Yoshino A, Hachiya J (2000) MR digital subtraction angiography of cerebral arteriovenous malformations. AJNR Am J Neuroradiol 21(4):707–711

    PubMed  CAS  Google Scholar 

  8. Jagadeesan BD, Delgado Almandoz JE, Moran CJ, Benzinger TL (2011) Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 42(1):87–92

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jagadeesan BD, Cross DT 3rd, Delgado Almandoz JE, Derdeyn CP, Loy DN, McKinstry RC, Benzinger TL, Moran CJ (2012) Susceptibility-weighted imaging: a new tool in the diagnosis and evaluation of abnormalities of the vein of Galen in children. AJNR Am J Neuroradiol 33(9):1747–1751

    Article  PubMed  CAS  Google Scholar 

  10. Miyasaka T, Taoka T, Nakagawa H, Wada T, Takayama K, Myochin K, Sakamoto M, Ochi T, Akashi T, Kichikawa K (2012) Application of susceptibility weighted imaging (SWI) for evaluation of draining veins of arteriovenous malformation: utility of magnitude images. Neuroradiology 54(11):1221–1227

    Article  PubMed  Google Scholar 

  11. Jagadeesan BD, Delgado Almandoz JE, Benzinger TL, Moran CJ (2011) Postcontrast susceptibility-weighted imaging: a novel technique for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 42(11):3127–3131

    Article  PubMed  PubMed Central  Google Scholar 

  12. George U, Jolappara M, Kesavadas C, Gupta AK (2010) Susceptibility-weighted imaging in the evaluation of brain arteriovenous malformations. Neurol India 58(4):608–614

    Article  PubMed  Google Scholar 

  13. Nakagawa I, Taoka T, Wada T, Nakagawa H, Sakamoto M, Kichikawa K, Hironaka Y, Motoyama Y, Park YS, Nakase H (2013) The use of susceptibility-weighted imaging as an indicator of retrograde leptomeningeal venous drainage and venous congestion with dural arteriovenous fistula: diagnosis and follow-up after treatment. Neurosurgery 72(1):47–55

    Article  PubMed  Google Scholar 

  14. Suazo L, Foerster B, Fermin R, Speckter H, Vilchez C, Oviedo J, Stoeter P (2012) Measurement of blood flow in arteriovenous malformations before and after embolization using arterial spin labeling. Interv Neuroradiol 18(1):42–48

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Lüdemann L, Jedrzejewski G, Heidenreich J, Han ET, Bruhn H (2011) Perfusion imaging of cerebral arteriovenous malformations: a study comparing quantitative continuous arterial spin labeling and dynamic contrast-enhanced magnetic resonance imaging at 3 T. Magn Reson Imaging 29(9):1157–1164

    Article  PubMed  Google Scholar 

  16. Wolf RL, Wang J, Detre JA, Zager EL, Hurst RW (2008) Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 29(4):681–687

    Article  PubMed  CAS  Google Scholar 

  17. Le TT, Fischbein NJ, André JB, Wijman C, Rosenberg J, Zaharchuk G (2012) Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am J Neuroradiol 33(1):61–68

    Article  PubMed  CAS  Google Scholar 

  18. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612–618

    Article  PubMed  Google Scholar 

  19. Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR (2005) Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging 22(4):439–450

    Article  PubMed  Google Scholar 

  20. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1):19–30

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Barnett GH, Little JR, Ebrahim ZY, Jones SC, Friel HT (1987) Cerebral circulation during arteriovenous malformation operation. Neurosurgery 20(6):836–842

    Article  PubMed  CAS  Google Scholar 

  22. Alsop DC, Detre JA (1998) Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 208:410–416

    Article  PubMed  CAS  Google Scholar 

  23. Detre JA, Alsop DC, Vives LR et al (1998) Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 50:633–641

    Article  PubMed  CAS  Google Scholar 

Download references

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the IRB committee of Children’s Hospital of Philadelphia and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Due to the retrospective nature of study, the IRB waived informed consent.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arastoo Vossough.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabavizadeh, S.A., Edgar, J.C. & Vossough, A. Utility of susceptibility-weighted imaging and arterial spin perfusion imaging in pediatric brain arteriovenous shunting. Neuroradiology 56, 877–884 (2014). https://doi.org/10.1007/s00234-014-1408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1408-1

Keywords

Navigation