Skip to main content
Log in

Susceptibility-weighted imaging of the venous networks around the brain stem

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The venous network of the brainstem is complex and significant. Susceptibility-weighted imaging (SWI) is a practical technique which is sensitive to veins, especially tiny veins. Our purpose of this study was to evaluate the visualization of the venous network of brainstem by using SWI at 3.0 T.

Methods

The occurrence rate of each superficial veins of brainstem was evaluated by using SWI on a 3 T MR imaging system in 60 volunteers. The diameter of the lateral mesencephalic vein and peduncular vein were measured by SWI using the reconstructed mIP images in the sagittal view. And the outflow of the veins of brainstem were studied and described according to the reconstructed images.

Results

The median anterior pontomesencephalic vein, median anterior medullary vein, peduncular vein, right vein of the pontomesencephalic sulcus, and right lateral anterior pontomesencephalic vein were detected in all the subjects (100 %). The outer diameter of peduncular vein was 1.38 ± 0.26 mm (range 0.8–1.8 mm). The lateral mesencephalic vein was found in 75 % of the subjects and the mean outer diameter was 0.81 ± 0.2 mm (range 0.5–1.2 mm). The inner veins of mesencephalon were found by using SWI.

Conclusion

The venous networks around the brain stem can be visualized by SWI clearly. This result can not only provide data for anatomical study, but also may be available for the surgical planning in the infratentorial region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rhoton AJ (2000) The posterior fossa veins. Neurosurgery 47:S69–S92

    Article  PubMed  Google Scholar 

  2. Matsushima T, Rhoton AJ, De Oliveira E, Peace D (1983) Microsurgical anatomy of the veins of the posterior fossa. J Neurosurg 59:63–105

    Article  CAS  PubMed  Google Scholar 

  3. Huang YP, Wolf BS (1965) The veins of the posterior fossa–superior or galenic draining group. Am J Roentgenol Radium Ther Nucl Med 95:808–821

    Article  CAS  PubMed  Google Scholar 

  4. Matsushima K, Matsushima T, Kuga Y, Kodama Y, Inoue K, Ohnishi H, Rhoton AJ (2014) Classification of the superior petrosal veins and sinus based on drainage pattern. Neurosurgery 10(Suppl 2):357–367

    Article  PubMed  Google Scholar 

  5. Ract I, Drier A, Leclercq D, Sourour N, Gabrieli J, Yger M, Nouet A, Dormont D, Chiras J, Clarencon F (2014) Extensive basal ganglia edema caused by a traumatic carotid-cavernous fistula: a rare presentation related to a basal vein of Rosenthal anatomical variation. J Neurosurg 121:63–66

    Article  PubMed  Google Scholar 

  6. Nakagawa I, Wada T, Nakagawa H, Hironaka Y, Kichikawa K, Nakase H (2012) A rare brainstem hemorrhage during transvenous embolization of a cavernous dural arteriovenous fistula. J Clin Neurosci 19:589–592

    Article  PubMed  Google Scholar 

  7. Kulwin C, Bohnstedt BN, Scott JA, Cohen-Gadol A (2012) Dural arteriovenous fistulas presenting with brainstem dysfunction: diagnosis and surgical treatment. Neurosurg Focus 32:E10

    Article  PubMed  Google Scholar 

  8. Thomas KL, Vilensky JA (2014) The anatomy of vascular compression in trigeminal neuralgia. Clin Anat 27:89–93

    Article  PubMed  Google Scholar 

  9. Hong W, Zheng X, Wu Z, Li X, Wang X, Li Y, Zhang W, Zhong J, Hua X, Li S (2011) Clinical features and surgical treatment of trigeminal neuralgia caused solely by venous compression. Acta Neurochir (Wien) 153:1037–1042

    Article  Google Scholar 

  10. Elhammady MS, Heros RC (2013) Cerebral veins: to sacrifice or not to sacrifice, that is the question. World Neurosurg

  11. Ardeshiri A, Ardeshiri A, Tonn JC, Winkler PA (2006) Microsurgical anatomy of the lateral mesencephalic vein and its meaning for the deep venous outflow of the brain. Neurosurg Rev 29:154–158, discussion 158

    Article  PubMed  Google Scholar 

  12. Ardeshiri A, Ardeshiri A, Linn J, Tonn JC, Winkler PA (2007) Microsurgical anatomy of the mesencephalic veins. J Neurosurg 106:894–899

    Article  PubMed  Google Scholar 

  13. Ong BC, Stuckey SL (2010) Susceptibility weighted imaging: a pictorial review. J Med Imaging Radiat Oncol 54:435–449

    Article  PubMed  Google Scholar 

  14. Rauscher A, Sedlacik J, Barth M, Haacke EM, Reichenbach JR (2005) Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging. Magn Reson Med 54:87–95

    Article  PubMed  Google Scholar 

  15. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  16. Beggs CB, Shepherd SJ, Dwyer MG, Polak P, Magnano C, Carl E, Poloni GU, Weinstock-Guttman B, Zivadinov R (2012) Sensitivity and specificity of SWI venography for detection of cerebral venous alterations in multiple sclerosis. Neurol Res 34:793–801

    Article  PubMed  Google Scholar 

  17. Yoshida Y, Terae S, Kudo K, Tha KK, Imamura M, Miyasaka K (2006) Capillary telangiectasia of the brain stem diagnosed by susceptibility-weighted imaging. J Comput Assist Tomogr 30:980–982

    Article  PubMed  Google Scholar 

  18. Spitz G, Maller JJ, Ng A, O'Sullivan R, Ferris NJ, Ponsford JL (2013) Detecting lesions after traumatic brain injury using susceptibility weighted imaging: a comparison with fluid-attenuated inversion recovery and correlation with clinical outcome. J Neurotrauma 30:2038–2050

    Article  PubMed  Google Scholar 

  19. Fahrendorf D, Schwindt W, Wolfer J, Jeibmann A, Kooijman H, Kugel H, Grauer O, Heindel W, Hesselmann V, Bink A (2013) Benefits of contrast-enhanced SWI in patients with glioblastoma multiforme. Eur Radiol 23:2868–2879

    Article  PubMed  Google Scholar 

  20. Fujii S, Kanasaki Y, Matsusue E, Kakite S, Kminou T, Okudera T, Ogawa T (2008) Demonstration of deep cerebral venous anatomy on phase-sensitive MR imaging. Clin Neuroradiol 18:216–223

    Article  Google Scholar 

  21. Fujii S, Kanasaki Y, Matsusue E, Kakite S, Kminou T, Ogawa T (2010) Demonstration of cerebral venous variations in the region of the third ventricle on phase-sensitive imaging. AJNR Am J Neuroradiol 31:55–59

    Article  CAS  PubMed  Google Scholar 

  22. Niwa T, Aida N, Kawaguchi H, Obata T, Kwee TC, Tachibana Y, Shibasaki J, Takahara T (2011) Anatomic dependency of phase shifts in the cerebral venous system of neonates at susceptibility-weighted MRI. J Magn Reson Imaging 34:1031–1036

    Article  PubMed  Google Scholar 

  23. Xia XB, Tan CL (2013) A quantitative study of magnetic susceptibility-weighted imaging of deep cerebral veins. J Neuroradiol 40:355–359

    Article  PubMed  Google Scholar 

  24. Mahvash M, Pechlivanis I, Charalampaki P, Jansen O, Mehdorn HM (2014) Visualization of small veins with susceptibility-weighted imaging for stereotactic trajectory planning in deep brain stimulation. Clin Neurol Neurosurg 124:151–155

    Article  PubMed  Google Scholar 

  25. Ishizaka K, Kudo K, Fujima N, Zaitsu Y, Yazu R, Tha KK, Terae S, Haacke EM, Sasaki M, Shirato H (2010) Detection of normal spinal veins by using susceptibility-weighted imaging. J Magn Reson Imaging 31:32–38

    Article  PubMed  Google Scholar 

  26. Manova ES, Habib CA, Boikov AS, Ayaz M, Khan A, Kirsch WM, Kido DK, Haacke EM (2009) Characterizing the mesencephalon using susceptibility-weighted imaging. AJNR Am J Neuroradiol 30:569–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Andeweg J (1999) Consequences of the anatomy of deep venous outflow from the brain. Neuroradiology 41:233–241

    Article  CAS  PubMed  Google Scholar 

  28. Haines SJ, Jannetta PJ, Zorub DS (1980) Microvascular relations of the trigeminal nerve. An anatomical study with clinical correlation. J Neurosurg 52:381–386

    Article  CAS  PubMed  Google Scholar 

  29. Kiyosue H, Tanoue S, Sagara Y, Hori Y, Okahara M, Kashiwagi J, Nagatomi H, Mori H (2008) The anterior medullary-anterior pontomesencephalic venous system and its bridging veins communicating to the dural sinuses: normal anatomy and drainage routes from dural arteriovenous fistulas. Neuroradiology 50:1013–1023

    Article  PubMed  Google Scholar 

  30. Holdorff B, Bradac GB (1974) The intraparenchymatous pontomesencephalic veins. A radio-anatomical study. Acta Anat (Basel) 89:333–344

    Article  CAS  Google Scholar 

  31. Bradac GB, Holdorff B, Simon RS (1971) Aspects of the venous drainage of the pons and the mesencephalon. Neuroradiology 3:102–108

    Article  CAS  PubMed  Google Scholar 

  32. Huang YP, Wolf BS (1970) Angiographic features of brain stem tumors and differential diagnosis from fourth ventricle tumors. Am J Roentgenol Radium Ther Nucl Med 110:1–30

    Article  CAS  PubMed  Google Scholar 

  33. Gabrielsen TO, Amundsen P (1969) The pontomesencephalic veins. A roentgenographic study. Radiology 92:889–896

    Article  CAS  PubMed  Google Scholar 

  34. Tubbs RS, Mortazavi MM, Krishnamurthy S, Verma K, Griessenauer CJ, Cohen-Gadol AA (2013) The relationship between the superior petrosal sinus and the porus trigeminus: an anatomical study. J Neurosurg 119:1221–1225

    Article  PubMed  Google Scholar 

  35. Tubbs RS, Loukas M, Louis RJ, Shoja MM, Askew CS, Phantana-Angkool A, Salter EG, Oakes WJ (2007) Surgical anatomy and landmarks for the basal vein of Rosenthal. J Neurosurg 106:900–902

    Article  PubMed  Google Scholar 

  36. Di Ieva A, Tschabitscher M, Galzio RJ, Grabner G, Kronnerwetter C, Widhalm G, Matula C, Trattnig S (2011) The veins of the nucleus dentatus: anatomical and radiological findings. Neuroimage 54:74–79

    Article  PubMed  Google Scholar 

  37. Yigit H, Turan A, Ergun E, Kosar P, Kosar U (2012) Time-resolved MR angiography of the intracranial venous system: an alternative MR venography technique. Eur Radiol 22:980–989

    Article  PubMed  Google Scholar 

  38. Teksam M, Casey S, McKinney A, Michel E, Truwit CL (2003) Anatomy and frequency of large pontomesencephalic veins on 3D CT angiograms of the circle of Willis. AJNR Am J Neuroradiol 24:1598–1601

    PubMed  Google Scholar 

  39. Chung JI, Weon YC (2005) Anatomic variations of the deep cerebral veins, tributaries of basal vein of Rosenthal: embryologic aspects of the regressed embryonic tentorial sinus. Interv Neuroradiol 11:123–130

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Yen K, Lovblad KO, Scheurer E, Ozdoba C, Thali MJ, Aghayev E, Jackowski C, Anon J, Frickey N, Zwygart K, Weis J, Dirnhofer R (2007) Post-mortem forensic neuroimaging: correlation of MSCT and MRI findings with autopsy results. Forensic Sci Int 173:21–35

    Article  CAS  PubMed  Google Scholar 

  41. Sun J, Wang J, Jie L, Wang H, Gong X (2011) Visualization of the internal cerebral veins on MR phase-sensitive imaging: comparison with 3D gadolinium-enhanced MR venography and fast-spoiled gradient recalled imaging. AJNR Am J Neuroradiol 32:E191–E193

    Article  CAS  PubMed  Google Scholar 

  42. Reichenbach JR, Haacke EM (2001) High-resolution BOLD venographic imaging: a window into brain function. NMR Biomed 14:453–467

    Article  CAS  PubMed  Google Scholar 

  43. Reichenbach JR, Barth M, Haacke EM, Klarhofer M, Kaiser WA, Moser E (2000) High-resolution MR venography at 3.0 Tesla. J Comput Assist Tomogr 24:949–957

    Article  CAS  PubMed  Google Scholar 

  44. Duvernoy HM (1975) The superficial veins of the human brain: veins of the brain stem and of the base of the brain. Springer, Berlin

    Book  Google Scholar 

  45. Lang J, Schaffrath H, Fischer G (1981) Further findings on the mesencephalic veins. Neurochirurgia (Stuttg) 30:69–71

    Google Scholar 

  46. Lang J, Koth R, Reiss G (1987) On the origin, course and influx-vessels of the V. basalis and the V. cerebri interna. Anat Anz 150:385–423

    Google Scholar 

  47. Haacke EM, Cheng NY, House MJ, Liu Q, Neelavalli J, Ogg RJ, Khan A, Ayaz M, Kirsch W, Obenaus A (2005) Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 23:1–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province, China (No.LY13H160033, No.Y2090376) and a grant from Zhejiang S&T Bureau (No.2009C33111). We thank all the members of this team for their hard work and invaluable assistance with the studies.

Ethical standards and patient consent

We declare that all human studies have been approved by the Ethics Committee of Wenzhou Medical University and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all volunteers gave informed consent prior to inclusion in this study.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nu Zhang.

Additional information

Nu Zhang and Cheng-Chun Cheng contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Zhang, XF., Qiao, HH. et al. Susceptibility-weighted imaging of the venous networks around the brain stem. Neuroradiology 57, 163–169 (2015). https://doi.org/10.1007/s00234-014-1450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1450-z

Keywords

Navigation