Skip to main content

Advertisement

Log in

Differentiation of hemangioblastomas from pilocytic astrocytomas using 3-T magnetic resonance perfusion-weighted imaging and MR spectroscopy

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Hemangioblastomas and pilocytic astrocytomas (PAs) present similar imaging features on conventional MR imaging, making differential diagnosis a challenge. The purpose of this study was to evaluate the usefulness of dynamic susceptibility-weighted contrast-enhanced perfusion-weighted imaging (DSC-PWI) and proton MR spectroscopic imaging in the differentiation of hemangioblastomas and PAs.

Methods

A 3.0-T MR imaging unit was used to perform DSC-PWI and conventional MR imaging on 14 patients with hemangioblastomas and 22 patients with PAs. Four patients with hemangioblastomas and 10 PA patients also underwent proton MR spectroscopy. Parameters of relative peak height (rPH) and relative percentage of signal intensity recovery (rPSR) were acquired by DSC-PWI and variables of N-acetylaspasrtate (NAA)/creatine (Cr), choline (Cho)/Cr, and lactate-lipid (Lac-Lip)/Cr by MR spectroscopy. The sensitivity, specificity, and the area under the receiver operating characteristic curve of all analyzed parameters at respective cutoff values were determined.

Results

Higher rPH but lower rPSR values were detected in hemangioblastomas compared to PAs. The NAA/Cr ratio was significantly lower in hemangioblastomas compared with PAs. The threshold values ≥3.2 for rPH provide sensitivity, specificity, positive predictive values, and negative predictive values of 85.7, 95.5, 92.3, and 91.3 %, respectively, for differentiating hemangioblastomas from PAs. The optimal threshold values were ≤0.9 for rPSR and ≤1.5 for NAA/Cr ratios in tumor.

Conclusion

Significantly higher rPH and lower NAA/Cr were seen in patients with hemangioblastomas when compared with PA patients, suggesting that DSC-PWI and proton MR spectroscopy are helpful in the characterization and differentiation of these two types of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed Central  PubMed  Google Scholar 

  2. Catapano D, Muscarella LA, Guarnieri V, Zelante L, D’Angelo VA, D’Agruma L (2005) Hemangioblastomas of central nervous system: molecular genetic analysis and clinical management. Neurosurgery 56(6):1215–1221, discussion 1221

    Article  PubMed  Google Scholar 

  3. Koeller KK, Rushing EJ (2004) From the archives of the AFIP: pilocytic astrocytoma: radiologic-pathologic correlation. Radiographics : Rev Publ Radiol Soc N Am Inc 24(6):1693–1708. doi:10.1148/rg.246045146

    Article  Google Scholar 

  4. Brundl E, Schodel P, Ullrich OW, Brawanski A, Schebesch KM (2014) Surgical resection of sporadic and hereditary hemangioblastoma: our 10-year experience and a literature review. Surg Neurol Int 5:138. doi:10.4103/2152-7806.141469

    PubMed Central  PubMed  Google Scholar 

  5. Padhi S, Sarangi R, Challa S, Bussary P, Panigrahi MK, Purohit AK (2011) A 10-year retrospective study of hemangioblastomas of the central nervous system with reference to von Hippel-Lindau (VHL) disease. J Clin Neurosci Off J Neurosurg Soc Australasia 18(7):939–944. doi:10.1016/j.jocn.2010.12.050

    Google Scholar 

  6. Erridge SC, Hart MG, Kerr GR, Smith C, McNamara S, Grant R, Gregor A, Whittle IR (2011) Trends in classification, referral and treatment and the effect on outcome of patients with glioma: a 20 year cohort. J Neurooncol 104(3):789–800. doi:10.1007/s11060-011-0546-0

    Article  CAS  PubMed  Google Scholar 

  7. Bladowska J, Zimny A, Guzinski M, Halon A, Tabakow P, Czyz M, Czapiga B, Jarmundowicz W, Sasiadek MJ (2013) Usefulness of perfusion weighted magnetic resonance imaging with signal-intensity curves analysis in the differential diagnosis of sellar and parasellar tumors: preliminary report. Eur J Radiol 82(8):1292–1298. doi:10.1016/j.ejrad.2013.01.033

    Article  PubMed  Google Scholar 

  8. Mangla R, Kolar B, Zhu T, Zhong J, Almast J, Ekholm S (2011) Percentage signal recovery derived from MR dynamic susceptibility contrast imaging is useful to differentiate common enhancing malignant lesions of the brain. AJNR Am J Neuroradiol 32(6):1004–1010. doi:10.3174/ajnr.A2441

    Article  CAS  PubMed  Google Scholar 

  9. Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS, Nelson SJ, Dillon WP (2007) Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 28(6):1078–1084. doi:10.3174/ajnr.A0484

    Article  CAS  PubMed  Google Scholar 

  10. Heiland S, Benner T, Debus J, Rempp K, Reith W, Sartor K (1999) Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood–brain-barrier. Magn Reson Imaging 17(1):21–27

    Article  CAS  PubMed  Google Scholar 

  11. Barajas RF Jr, Chang JS, Segal MR, Parsa AT, McDermott MW, Berger MS, Cha S (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253(2):486–496. doi:10.1148/radiol.2532090007

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lupo JM, Cha S, Chang SM, Nelson SJ (2005) Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 26(6):1446–1454

    PubMed  Google Scholar 

  13. Yang D, Korogi Y, Sugahara T, Kitajima M, Shigematsu Y, Liang L, Ushio Y, Takahashi M (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44(8):656–666. doi:10.1007/s00234-002-0816-9

    Article  CAS  PubMed  Google Scholar 

  14. Orphanidou-Vlachou E, Auer D, Brundler MA, Davies NP, Jaspan T, MacPherson L, Natarajan K, Sun Y, Arvanitis TN, Grundy RG, Peet AC (2013) (1)H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours. Eur J Radiol 82(6):e295–e301. doi:10.1016/j.ejrad.2013.01.030

    Article  CAS  PubMed  Google Scholar 

  15. Bing F, Kremer S, Lamalle L, Chabardes S, Ashraf A, Pasquier B, Le Bas JF, Krainik A, Grand S (2009) Value of perfusion MRI in the study of pilocytic astrocytoma and hemangioblastoma: preliminary findings. J Neuroradiol J Neuroradiol 36(2):82–87. doi:10.1016/j.neurad.2008.09.002

    Article  CAS  Google Scholar 

  16. Grand SD, Kremer S, Tropres IM, Hoffmann DM, Chabardes SJ, Lefournier V, Berger FR, Pasteris C, Krainik A, Pasquier BM, Peoch M, Le Bas JF (2007) Perfusion-sensitive MRI of pilocytic astrocytomas: initial results. Neuroradiology 49(7):545–550. doi:10.1007/s00234-006-0204-y

    Article  PubMed  Google Scholar 

  17. Hwang JH, Egnaczyk GF, Ballard E, Dunn RS, Holland SK, Ball WS Jr (1998) Proton MR spectroscopic characteristics of pediatric pilocytic astrocytomas. AJNR Am J Neuroradiol 19(3):535–540

    CAS  PubMed  Google Scholar 

  18. Cha S, Knopp EA, Johnson G, Wetzel SG, Litt AW, Zagzag D (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223(1):11–29

    Article  PubMed  Google Scholar 

  19. Kumar VA, Knopp EA, Zagzag D (2010) Magnetic resonance dynamic susceptibility-weighted contrast-enhanced perfusion imaging in the diagnosis of posterior fossa hemangioblastomas and pilocytic astrocytomas: initial results. J Comput Assist Tomogr 34(6):825–829. doi:10.1097/RCT.0b013e3181ef77e2

    Article  PubMed  Google Scholar 

  20. Cuccurullo L, Prudente ME, Maffia S, Accardo M (2009) An ultrastructural study of the histogenesis of haemangioblastoma. Pathologica 101(1):1–5

    CAS  PubMed  Google Scholar 

  21. Hussein MR (2007) Central nervous system capillary haemangioblastoma: the pathologist’s viewpoint. Int J Exp Pathol 88(5):311–324. doi:10.1111/j.1365-2613.2007.00535.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Uematsu H, Maeda M, Sadato N, Ishimori Y, Matsuda T, Koshimoto Y, Kimura H, Yamada H, Kawamura Y, Takeuchi H, Yonekura Y, Itoh H (2002) Measurement of the vascularity and vascular leakage of gliomas by double-echo dynamic magnetic resonance imaging: a preliminary study. Investig Radiol 37(10):571–576. doi:10.1097/01.RLI.0000028483.51109.29

    Article  Google Scholar 

  23. Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249(2):601–613. doi:10.1148/radiol.2492071659

    Article  PubMed Central  PubMed  Google Scholar 

  24. de Fatima Vasco Aragao M, Law M, Batista de Almeida D, Fatterpekar G, Delman B, Bader AS, Pelaez M, Fowkes M, Vieira de Mello R, Moraes Valenca M (2014) Comparison of perfusion, diffusion, and MR spectroscopy between low-grade enhancing pilocytic astrocytomas and high-grade astrocytomas. AJNR Am J Neuroradiol 35(8):1495–1502. doi:10.3174/ajnr.A3905

    Article  PubMed  Google Scholar 

  25. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, Johnson G (2004) Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 25(5):746–755

    PubMed  Google Scholar 

  26. Kuesel AC, Briere KM, Halliday WC, Sutherland GR, Donnelly SM, Smith IC (1996) Mobile lipid accumulation in necrotic tissue of high grade astrocytomas. Anticancer Res 16(3B):1485–1489

    CAS  PubMed  Google Scholar 

  27. Ishizawa K, Komori T, Hirose T (2005) Stromal cells in hemangioblastoma: neuroectodermal differentiation and morphological similarities to ependymoma. Pathol Int 55(7):377–385. doi:10.1111/j.1440-1827.2005.01841.x

    Article  PubMed  Google Scholar 

  28. Isobe T, Yamamoto T, Akutsu H, Anno I, Shiigai M, Zaboronok A, Masumoto T, Takano S, Matsumura A (2010) Proton magnetic resonance spectroscopy findings of hemangioblastoma. Jpn J Radiol 28(4):318–321. doi:10.1007/s11604-010-0421-5

    Article  PubMed  Google Scholar 

Download references

Ethical standards and patient consent

We declare that all human studies have been approved by the Institutional Review Board of First Affiliated Hospital of Fujian Medical University and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Due to the retrospective nature of this study, the Institutional Review Board waived patient consent.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, D.J., Xing, Z., Zeng, Z. et al. Differentiation of hemangioblastomas from pilocytic astrocytomas using 3-T magnetic resonance perfusion-weighted imaging and MR spectroscopy. Neuroradiology 57, 275–281 (2015). https://doi.org/10.1007/s00234-014-1475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1475-3

Keywords

Navigation