Skip to main content

Advertisement

Log in

Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic Pontine gliomas during treatment: implications for current response assessment strategies

  • Paediatric Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Based on clinical observations, we hypothesized that in infiltrative high-grade brainstem neoplasms, such as diffuse intrinsic pontine glioma (DIPG), longitudinal metabolic evaluation of the tumor by magnetic resonance spectroscopy (MRS) may be more accurate than volumetric data for monitoring the tumor’s biological evolution during standard treatment.

Methods

We evaluated longitudinal MRS data and corresponding tumor volumes of 31 children with DIPG. We statistically analyzed correlations between tumor volume and ratios of Cho/NAA, Cho/Cr, and NAA/Cr at key time points during the course of the disease through the end of the progression-free survival period.

Results

By the end of RT, tumor volume had significantly decreased from the baseline (P < .0001) and remained decreased through the last available follow-up magnetic resonance imaging study (P = .007632). However, the metabolic profile of the tumor tissue (Cho/Cr, NAA/Cr, and Cho/NAA ratios) did not change significantly over time.

Conclusion

Our data show that longitudinal tumor volume and metabolic profile changes are dissociated in patients with DIPG during progression-free survival. Volume changes, therefore, may not accurately reflect treatment-related changes in tumor burden. This study adds to the existing body of evidence that the value of conventional MRI metrics, including volumetric data, needs to be reevaluated critically and, in infiltrative tumors in particular, may not be useful as study end-points in clinical trials. We submit that advanced quantitative MRI data, including robust, MRS-based metabolic ratios and diffusion and perfusion metrics, may be better surrogate markers of key end-points in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. CBTRUS (2010) CBTRUS. Statistical Report: Primary brain and central nervous system tumors diagnosed in the United States in 2004–2006

  2. Albright AL, Price RA, Guthkelch AN (1983) Brain stem gliomas of children. A clinicopathological study. Cancer 52:2313–2319

    Article  CAS  PubMed  Google Scholar 

  3. Epstein F, McCleary EL (1986) Intrinsic brain-stem tumors of childhood: surgical indications. J Neurosurg 64:11–15. doi:10.3171/jns.1986.64.1.0011

    Article  CAS  PubMed  Google Scholar 

  4. Kaplan AM, Albright AL, Zimmerman RA et al (1996) Brainstem gliomas in children. A Children’s Cancer Group review of 119 cases. Pediatr Neurosurg 24:185–192

    Article  CAS  PubMed  Google Scholar 

  5. Thakur SB, Karimi S, Dunkel IJ et al (2006) Longitudinal MR spectroscopic imaging of pediatric diffuse pontine tumors to assess tumor aggression and progression. AJNR Am J Neuroradiol 27:806–809

    CAS  PubMed  Google Scholar 

  6. Hargrave D, Chuang N, Bouffet E (2008) Conventional MRI cannot predict survival in childhood diffuse intrinsic pontine glioma. J Neurooncol 86:313–319. doi:10.1007/s11060-007-9473-5

    Article  PubMed  Google Scholar 

  7. Liu AK, Brandon J, Foreman NK, Fenton LZ (2009) Conventional MRI at presentation does not predict clinical response to radiation therapy in children with diffuse pontine glioma. Pediatr Radiol 39:1317–1320. doi:10.1007/s00247-009-1368-5

    Article  PubMed  Google Scholar 

  8. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7:241–248. doi:10.1016/S1470-2045(06)70615-5

    Article  PubMed  Google Scholar 

  9. Hipp SJ, Steffen-Smith E, Hammoud D et al (2011) Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neurooncol 13:904–909. doi:10.1093/neuonc/nor076

    Google Scholar 

  10. Panigrahy A, Nelson MD, Finlay JL et al (2008) Metabolism of diffuse intrinsic brainstem gliomas in children. Neurooncol 10:32–44. doi:10.1215/15228517-2007-042

    CAS  Google Scholar 

  11. Steffen-Smith EA, Shih JH, Hipp SJ et al (2011) Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma. J Neurooncol 105:365–373. doi:10.1007/s11060-011-0601-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Broniscer A, Baker JN, Tagen M et al (2010) Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J Clin Oncol 28:4762–4768. doi:10.1200/JCO.2010.30.3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamasaki F, Kurisu K, Kajiwara Y et al (2011) Magnetic resonance spectroscopic detection of lactate is predictive of a poor prognosis in patients with diffuse intrinsic pontine glioma. Neurooncol 13:791–801. doi:10.1093/neuonc/nor038

    Google Scholar 

  14. Burger PC, Mahley MS, Dudka L, Vogel FS (1979) The morphologic effects of radiation administered therapeutically for intracranial gliomas: a postmortem study of 25 cases. Cancer 44:1256–1272

    Article  CAS  PubMed  Google Scholar 

  15. Dietrich J, Rao K, Pastorino S, Kesari S (2011) Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol 4:233–242. doi:10.1586/ecp.11.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120

    Article  CAS  PubMed  Google Scholar 

  17. Hedley-Whyte ET, Hsu DW (1986) Effect of dexamethasone on blood–brain barrier in the normal mouse. Ann Neurol 19:373–377. doi:10.1002/ana.410190411

    Article  CAS  PubMed  Google Scholar 

  18. Heiss JD, Papavassiliou E, Merrill MJ et al (1996) Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest 98:1400–1408. doi:10.1172/JCI118927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Papadopoulos MC, Saadoun S, Binder DK et al (2004) Molecular mechanisms of brain tumor edema. Neuroscience 129:1011–1020. doi:10.1016/j.neuroscience.2004.05.044

    Article  CAS  PubMed  Google Scholar 

  20. Sedlacik J, Winchell A, Kocak M et al (2013) MR imaging assessment of tumor perfusion and 3D segmented volume at baseline, during treatment, and at tumor progression in children with newly diagnosed diffuse intrinsic pontine glioma. AJNR Am J Neuroradiol 34:1450–1455. doi:10.3174/ajnr.A3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poussaint TY, Kocak M, Vajapeyam S et al (2011) MRI as a central component of clinical trials analysis in brainstem glioma: a report from the Pediatric Brain Tumor Consortium (PBTC). Neuro-Oncol 13:417–427. doi:10.1093/neuonc/noq200

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stadlbauer A, Moser E, Gruber S et al (2004) Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. NeuroImage 23:454–461. doi:10.1016/j.neuroimage.2004.06.022

    Article  PubMed  Google Scholar 

  23. Macdonald DR, Cascino TL, Schold SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    CAS  PubMed  Google Scholar 

  24. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. doi:10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  25. Warren KE, Poussaint TY, Vezina G et al (2013) Challenges with defining response to antitumor agents in pediatric neuro-oncology: a report from the response assessment in pediatric neuro-oncology (RAPNO) working group. Pediatr Blood Cancer 60:1397–1401. doi:10.1002/pbc.24562

    Article  PubMed  Google Scholar 

  26. Kelly PJ, Daumas-Duport C, Scheithauer BW et al (1987) Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 62:450–459

    Article  CAS  PubMed  Google Scholar 

  27. Lu S, Ahn D, Johnson G et al (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232:221–228. doi:10.1148/radiol.2321030653

    Article  PubMed  Google Scholar 

  28. Oh J, Cha S, Aiken AH et al (2005) Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging JMRI 21:701–708. doi:10.1002/jmri.20335

    Article  PubMed  Google Scholar 

  29. Cohen BA, Knopp EA, Rusinek H et al (2005) Assessing global invasion of newly diagnosed glial tumors with whole-brain proton MR spectroscopy. AJNR Am J Neuroradiol 26:2170–2177

    PubMed  Google Scholar 

  30. Steffen-Smith EA, Venzon DJ, Bent RS et al (2012) Single- and multivoxel proton spectroscopy in pediatric patients with diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys 84:774–779. doi:10.1016/j.ijrobp.2012.01.032

    Article  PubMed  PubMed Central  Google Scholar 

  31. Law M, Yang S, Wang H et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  32. Laprie A, Pirzkall A, Haas-Kogan DA et al (2005) Longitudinal multivoxel MR spectroscopy study of pediatric diffuse brainstem gliomas treated with radiotherapy. Int J Radiat Oncol Biol Phys 62:20–31. doi:10.1016/j.ijrobp.2004.09.027

    Article  PubMed  Google Scholar 

  33. Poussaint TY, Vajapeyam S, Ricci KI, et al. (2015) Apparent diffusion coefficient histogram metrics correlate with survival in diffuse intrinsic pontine glioma: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol

Download references

Acknowledgments

This work was supported in part by Grant P30 CA021765 from the National Cancer Institute and by the American Lebanese Syrian Associated Charities (ALSAC). The authors thank Dr. Cherise Guess of the Department of Scientific Editing at St. Jude Children’s Research Hospital for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Patay.

Ethics declarations

We declare that all human studies have been approved by the local ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. We declare that all patients gave informed consent prior to inclusion in this study.

Conflict of interest

AB received partial financial support from AstraZeneca to conduct this clinical trial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löbel, U., Hwang, S., Edwards, A. et al. Discrepant longitudinal volumetric and metabolic evolution of diffuse intrinsic Pontine gliomas during treatment: implications for current response assessment strategies. Neuroradiology 58, 1027–1034 (2016). https://doi.org/10.1007/s00234-016-1724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-016-1724-8

Keywords

Navigation